
1/6/20

1

Register	
Allocation

Objectives

May	need	to	insert	loads	and	stores	to	move	values	between	registers	
and	stack.	

Goal:	to	make	effective	use	of	the	target	machine's	register	set

Goal:	to	minimize	the	number	of	loads	and	stores



1/6/20

2

Approaches
We	look	at	three	approaches,	not	necessarily	exclusive:
◦ Liveness	and	interference	
◦ Usage	counts
◦ Furthest	invocation

Liveness	Analysis
A	variable	is	live	if	the	variable	is	used	at	some	later	point	in	the	
program	and	there	is	not	an	intervening	assignment	to	the	variable.

Example:
1 (movq (int 5) (var a))

2 (movq (int 30) (var b))
3 (movq (var a) (var c))

4 (movq (int 10) (var b))

5 (addq (var b) (var c))

Are	a and	b live	at	the	same	time?



1/6/20

3

Calculating	Liveness
Traverse	the	instruction	sequence	back	to	front	(i.e.,	backwards	in	
execution	order).	

Let	I1,…,In be	an	instruction	sequence.	

We	write:
◦ Lafter(k) for	the	set	of	live	variables	after	instruction	Ik
◦ Lbefore(k) for	the	set	of	live	variables	before	instruction	Ik

The	live	variables	after	an	instruction	are	always	the	same	as	those	
before	the	next	instruction:
◦ Lafter(k) = Lbefore(k+1) 

Furthermore:
◦ Lafter(n) = {}

Calculating	Liveness
At	each	instruction,	we	calculate:
◦ Lbefore(k) = (Lafter(k) – W(k)) ∪ R(k) 

Where	W(k)are	the	variables	written by	instruction	Ik
And	R(k)are	the	variables	read by	instruction	Ik



1/6/20

4

Calculating	Liveness
Consider	the	following	example:

Interference	Graphs
Based	on	the	liveness	analysis,	we	know	where	each	variable	is	needed.	

During	register	allocation,	we	need	to	answer	questions	of	the	specific	
form:	are	variables	u	and	v	live	at	the	same	time?

In	that	case,	u	and	v	cannot	be	assigned	to	the	same	register.	

An	interference	graph	is	an	undirected	graph	that	has	an	edge	between	
two	variables	if	they	are	live	at	the	same	time,	that	is,	if	they	interfere	
with	each	other.



1/6/20

5

Calculating	Interference	Graphs
If	instruction	Ik is:
◦ A	move:	(movq s d),	then	add	the	edge	(d, v)	for	every	v ∈
Lafter(k)unless	v = d or	v = s.

◦ Not a	move	but	some	other	instruction	such	as	(add s d),	then	add	the	
edge	(d, v)	for	every	v ∈ Lafter(k)unless	v = d.

◦ Of	the	form	(callq label),	then	add	an	edge	(r, v)	for	every	caller-save	
register	r and	every	variable	v ∈ Lafter(k).

Interference	Graph	for	our	Example



1/6/20

6

Still	a	bit	short	on	Registers?
Spill	a	register	on	the	stack.

Use	the	one	for	which	the	next	use	is	furthest	in	the	future.
◦ Return	index	in	the	block	of	the	next	reference	to	a	register.
◦ Can	be	precomputed	in	a	backward	pass	over	the	block.


