
12/2/19

1

CSSE	404:	Compilers
Introduction
MICHAEL	WOLLOWSKI

Many,	but	not	all	of	the	materials	in	this	presentation	are	from	the	book	Compilers,	by	Dave	and	Dave

Why	Study	Compilers?
Brings	together	much	of	computer	science:
◦ Algorithms
◦ Theory
◦ Architecture

Large,	complex	project

Central	to	our	work	as	programmers

Extraordinarily	cool	when	it	works



12/2/19

2

Genealogy	of	Programming	Languages

Image	source:	Compilers	by	Dave	and	Dave

High	Level	Languages	(HLL)
An	HLL	looks	more	like	a	natural	language	than	a	machine	or	
assembly	language
Structured	programming	and	modularity	are	emphasized
Examples:	C,	C++,	Java,	Ada



12/2/19

3

Very	High	Level	Languages	(VHLL)
A	VHLL	is	developed	for	specific	application	areas	or	computational	
needs.
Examples:	Prolog,	MATLAB,	R

Why	High	Level	Languages?
Readability
◦ ideally	self-documenting

Portability
◦ same	source	code	can	be	used	on	different	families	of	machines

Productivity
◦ Rule	of	thumb:	programmer	can	deliver	50	lines/day	of	tested,	
debugged	code

Debugging	ease
◦ Logical	meaning	of	constructs



12/2/19

4

Why	High	Level	Languages?
Modularity
◦ Aids	in	team	work	and	code	reuse

Optimization
◦ Converting	tail	calls	into	iterative	constructs

Generality
◦ Write	code	for	many	applications

Error	detection
◦ Think	generics	in	Java:	detecting	as	many	errors	as	possible	at	compile	time

What	is	a	Compiler?
A	compiler	is	a	translator

Image	source:	Compilers	by	Dave	and	Dave



12/2/19

5

Fundamental	Principles
Preserve	meaning	of	input	program
Improve	on	the	input	program
If	you	know	how	your	compiler	works,	you	may	be	able	to	
take	advantage	of	that.
For	example,	write	a	tail-recursive	procedure	which	will	be	
converted	to	an	iteration.

Phases	of	a	Compiler
Pre-processing
◦ A	macro	processor	which	provides	for	file	inclusion,	conditional	compilation	control	
etc.

Lexical	analysis
◦ Also	called	the	“scanner”
◦ Identifies	and	tags	the	words	in	the	source	file
◦ Example:	number,	identifier

Syntax	analysis
◦ Also	called	the	“parser”
◦ Typically	produces	a	parse	tree
◦ Enables	the	compiler	to	verify	that	the	source	file	is	a	valid	program	and	to	check	for	
errors



12/2/19

6

Phases	of	a	Compiler
Semantic	analysis
◦ Also	called	the	“mapper”
◦ Processed	the	parse	tree	to	generate	intermediate	code
Code	generation
◦ Processed	intermediate	code	to	to	produce	code	in	some	target	language
◦ Target	language	can	be	a	VM,	assembly	or	machine	code
Error	checking
◦ This	is	spread	throughout	the	compiler
Optimization
◦ This	too	is	spread	throughout	the	compiler

Basic	Structure
Typically	composed	of	stages

Stages	grouped	into	major	phases

◦ Front	end

◦ Optimizer
◦ Back	end



12/2/19

7

Components	of	a	Compiler

Image	source:	Compilers	by	Dave	and	Dave

Types	of	Compilers
One-pass
◦ Compiler	completes	all	of	its	processing	in	one	fell	swoop
◦ Benefit:	Simple	compiler

Multi-pass
◦ Compiler	processes	various	intermediate	representations	several	times.
◦ Benefit:	More	powerful	optimization

Nano-pass
◦ Each	phase	of	the	compiler	does	one	thing	and	one	thing	only
◦ Reference:	https://www.cs.indiana.edu/~dyb/pubs/nano-jfp.pdf


