
CSSE 290 Web Programming
Homework Assignment 5: ASCIImation

This assignment should increase your understanding of JavaScript and its interaction with HTML user interfaces.
You must match the appearance and behavior of the following web page:

ASCII art involves pictures made from text characters. ASCII art has a long history as a way to draw pictures for
text-only monitors or printers. We will draw animated ASCII art, or "ASCIImation." Groups of nerds are working
to recreate the entire movies Star Wars and The Matrix as ASCIImation.

Your first task is to create a page ascii.html with a user interface (UI) for creating/viewing ASCIImations. Your
page should link to a style sheet you'll write named ascii.css. After creating your page, you must make the UI
interactive by writing JavaScript code in ascii.js so that manipulating the UI controls causes appropriate behavior.
Your HTML page should link to your JS file with a script tag.

You should also create an ASCIImation of your own, stored in a file named myanimation.txt. Your ASCIImation
must show non-trivial effort, must have multiple frames of animation, and must be entirely your own work. Be
creative!

Summary of the files you need to create:
 ascii.html, your web page
 ascii.css, the style sheet for your web page
 ascii.js, the JavaScript code for your web page
 myanimation.txt, your custom ASCII animation as a plain text file
 myanimation.js, your custom ASCII animation as JavaScript code (so it can be used on the page)

Appearance Details:

The page should have a title of ASCIImation. Your html page must link to the following JavaScript and CSS
resources.

 animations.js (provided)
 myanimation.js (you will write this file)
 ascii.js (you will write this file)
 ascii.css (you will write this file)

Ignore the red heart in the sample picture.

The overall page has a background color of #CCCCFF. The preferred font for all text on the page is the default
sans-serif font available on the system, in size 14pt, in bold.

The top of the page contains a heading in 32pt bold text, centered horizontally within the page. There is no margin
between the heading content area and other neighboring content on the page.

Under the page's heading is a text box with 80 columns and 20 rows, centered horizontally. Its width is 90% of the
page width, and height is 400px. It uses a 12pt bold monospace font initially. CSS width/height properties will set
the text box's size.

Below the text box is a set of controls grouped into several field sets, each with a 5px black border around it and a
label on top. Their behavior is described below. To get the field sets to appear in a row horizontally, see textbook
Chapter 4's section about Element Visibility and the display property. You should make sure that the tops of the
field sets line up by setting their vertical alignment. The text area and control field sets are centered horizontally.

Below the controls is a right-aligned section with images that are links to the W3C validators and the JSLint tool.

Behavior Details:

The following are the groups of controls at the bottom of the page and each control's behavior.
(NOTE: Although we put controls in a form in past assignments, do not use a form tag on your page this time.)

Play Controls:

Start: When clicked, animation begins. When the page is idle, all frames of the animation are visible. Frames are
separated by 5 equals signs and a line break (\n) character.

When animation starts, whatever text is currently in the text box is broken apart to produce frames of animation.
This might be a pre-set animation, or text that the user has typed manually. During animation, one frame is visible at
any moment, starting with the first frame. By default, the animation changes frames once every 250ms. When the
animation reaches the last frame, it loops back around and repeats indefinitely.

(You must implement your animation using a JavaScript timer with the setInterval function.)

Stop: When clicked, halts any animation in progress. When animation is stopped, the text that was in the box before
animation began is returned to the box.

Animation:

A drop-down list of ASCII animations. When one of the animations is chosen (onchange), the main text area
updates to display all text of the chosen animation. The choices available are: Blank, Exercise, Juggler, Bike, Dive,
Custom. Initially the Blank animation is selected and no text is showing in the text entry box.

Your ascii.html page should link to the provided animations.js file that declares the ASCIImations as global string
variables named EXERCISE, JUGGLER, BIKE, and DIVE. You shouldn't edit this file; your ascii.js file can refer to these
variables. For example, if you have a textarea on your page with an id of mytextarea, the following code is legal:
$("mytextarea").value = JUGGLER;

The provided animations.js file also defines a global associative array named ANIMATIONS that maps from indexes
(keys) that are strings equal to the names of the animations, such as "Bike" or "Exercise", to values that are long

strings representing the entire animation text for that image. Using this array well can help you avoid redundancy.

Here is a short example that uses the ANIMATIONS array:
var whichOne = "Juggler";
$("mytextarea").value = ANIMATIONS[whichOne];

The user may type new text in the field after choosing a pre-set animation. The animation shown when Play is
pressed should reflect these changes. (i.e., Don't capture the text to animate until the user presses the Start button.)

You may assume that the user will not try to type into the text area while animation is in progress. You may also
assume that the user will not use the selection box to change to a new animation while animation is occurring;
assume that the user will stop any existing animation before changing to a new one.

Custom Animation:

The Custom choice in the Animation box should show an animation that you have created. The http://www.rose-
hulman.edu/class/csse/csse290-WebProgramming/201330/SupportCode/StringMaker/stringmaker.html link on
the web site can convert your animation to a string that you can put into myanimation.js. Don't put comments or
headings in myanimation.txt; those should NOT be encoded by StringMaker. The text file contains your
animation in plain text, so that if someone did Select All, Copy, and Paste into your running ASCIImation page, it
would animate properly.

Note: You are turning in your custom animation in two ways: first as a plain .txt file, and also in a .js file as an
encoded string.

Font Size:

A drop-down list of font sizes. When one of the font sizes is chosen, it immediately sets the font size in the main
text area. The font sizes listed in the drop-down list, and the corresponding font size to set, are:

 Tiny (7pt), Small (10pt), Medium (12pt), Large (16pt), Extra Large (24pt), XXL (32pt)

Initially Medium is selected and the text is 12pt in size. If the animation is playing and one of these buttons is
clicked, the font size changes immediately.

Note that when you write the code for changing the font sizes, it is easy to introduce redundancy. By setting a value
attribute on each of the options in the drop-down list, you can avoid a long series of if/else statements.

Speed:

There are three radio buttons labeled "Turbo", “Normal”, and “Slo-Mo”. Turbo sets the speed of animation to use
a 50ms delay instead of 250ms. Slo-mo uses a 1000ms delay. Initially Normal is selected and the delay is 250ms.

If the animation is already playing and the user selects different speed button, the speed change should take effect
immediately (the user shouldn't have to stop and restart the animation to see the change). Changing the speed
should not cause the animation to start if it wasn't already started. It also shouldn't reset which frame is showing; it
should just change the delay.

Control Enabling/Disabling:

Modify your GUI to disable elements that the user shouldn't be able to click at a given time. Initially and whenever
animation is not in progress, the Stop button should be disabled. When animation is in progress, Start and the
selection of a different animation should be disabled. The Size box and speed buttons should always be enabled.

Enable or disable a control with its disabled property. For example, to disable a control with id of customerlist:
document.getElementById("customerlist").disabled = true;

Development Strategy and Hints:

1. Write the basic HTML content including the proper UI controls. (Don't use the form tag.)
2. Write your CSS code to achieve the proper layout.
3. Write a small amount of "starter" JS code and make sure that it runs.

(For example, make it so that when the Start button is clicked, an alert box appears.)
4. Implement code to change the animation text and font sizes. Make it so that when an option is chosen in

the selection box, the proper text string appears in the text area. Get the font size options working.
5. Implement a minimal Start behavior so that when Start is clicked, a single frame of animation is shown.

Clicking Start multiple times would show successive frames of animation.
6. Use a JavaScript timer to implement the proper animation based on your previous code.

We strongly recommend that you install and use the Firebug add-on for Firefox on this assignment, or use the
similar tool built into other browsers such as Chrome. Firebug shows syntax errors in your JavaScript code. You
can use it as a debugger, set breakpoints, type expressions on its Console, and watch variables' values. Firebug is
essential for serious JavaScript programming.

The University of Washington JSLint tool can help you find common JavaScript bugs. If you encounter tricky bugs.
If so, paste your JavaScript code into JSLint to look for possible errors or warnings.

For full credit, your .js file must be written in JavaScript "strict" mode by putting this exact line of code at the top:
"use strict";

Submission:

Submit your entire HW5 folder to your webProgramming folder on the wwwusers.csse.rose‐hulman.edu
server.

Copyright © Marty Stepp / Jessica Miller, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Modified (with permission) for CSSE 290 at Rose-Hulman by Claude Anderson

