CSSE232
Computer Architecture |

Pipelining
e From last time...

e Data Hazards:

— Create units to help with
 Forward data
 Detect when stalls are needed

Datapath with Hazard Detection

PCWrite

H_,

Instruction
memory

("~ Hazara ID/EX.MemRead
detection |«

—- unit
2
= ID/EX
- /\ @ |” We EX/MEM
Control u M »\WB L“iEM/WB
X — c —
IFJD U O*U LEX M WBl—
/2
M
u
S X
S Registers / N
E N ALUP~
B M Data
u memory
X
IF/ID.RegisterRs R
IF/ID.RegisterRt
IF/ID.RegisterRt at (M
IF/ID.RegisterRd Rd g > >
- ID/EX.RegisterRt — _J L L
Forwarding)

Jj\i
il K2

unit
L

xc=

Branching

Previous datapaths had no issues with
oranching

Pipeline datapath
— Executing several instructions in parallel

— Processing branch and subsequent instructions!

Branch Hazards

Time (in clock cycles)
CC1 CcC2 CC3 CC4 CC5 CC#6 CcCc7 CC8 CC9

Program
execution
order

(in instructions)

40 beq $1, $3, 28

I

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

—

72 lw $4, 50($7)

Y

Flushing

e Stall

— Stopped updates to IF, ID
— Cancelled EX for current instruction

 Flush

— Cancel all instructions!
— Set control to zero in for 3 instructions in flight

Reducing Flushed Instructions

e How to reduce wasted instructions?

Reducing Branch Flushing

* Move hardware to determine outcome to ID stage
— Target address adder
— Register comparator

e ALUs are slow
— Subtaction is slow

* Equal is much easier
— Just use XOR gates

and $12, $2, $5 beq $1, $3, 7 sub $10, $4, $8 before<1> before<2>

IF.Flush

Hazard
detection
unit

1
IDJEX

z______________________

m
X

$1

Data
memory

T
Forwarding :

unit J

Clock 3

Detecting Control Hazard

 Hazard unit can detect branch instructions, and
automatically flush next instruction

 MIPS does not detect control hazards
— Does not flush!
— Will execute 1 instruction after branch
— Require noop after all branches?

* Lets programmer choose to use the 'delay slot'
— Can increment loop counter (or something else)

Other Control Hazards

e Jump and link
— Greencard says PC+8
— Assumes a delay slot
— Return to instruction after delay slot

Other complications

* Flushing is one problem
— MIPS solution is to reduce to single delay slot

 What about getting branch ready?

* |f a comparison register is a destination of 2"
or 3" preceding ALU instruction

add $1, $2, $3 IF IID IEx IMEI\I\ WB

add $4, $5, $6 IF IID I EX

l
IF I ID I \X I MEI\I\I WB

beq $1, $4, target IF

m Can resolve using forwarding

* |f a comparison register is a destination of
preceding ALU instruction or 2" preceding

load instruction
— Need 1 stall cycle

ME!\I\

WB

Tw $1, addr IF IID I

add $4, $5, $6 IF I

EX

beq stalled

beq $1, $4, target

WB

__’

* |f a comparison register is a destination of
immediately preceding load instruction

— Need 2 stall cycles

Tw $1, addr IF

EX

ME!\I\

WB

beq stalled
beq stalled

beq $1, $0, target

o]

ID

o

WB

Dynamic Branch Prediction

* |In deeper and superscalar pipelines, branch penalty
is more significant

* Use dynamic prediction
— Branch prediction buffer (aka branch history table)
— Indexed by recent branch instruction addresses
— Stores outcome (taken/not taken)

— To execute a branch
* Check table, expect the same outcome
 Start fetching from fall-through or target
 If wrong, flush pipeline and flip prediction

Review and Questions

e Hazards
— Data
— Control

— Structural
e Hazard detection
 Hazard prevention

