CSSE232
Computer Architecture |



Class Status

* Reading
— Sections 4.1-3

* Project
— Project group milestone assighed
— Indicate who you want to work with
— Indicate who you don’t want to work with

— Due next Friday (before exam)



Review so far

 Performance
* |nstruction Sets (ISAs)

 MIPS assembly
— Register convention
— Procedure calls
— Alignment
— Exceptions



Outline

Today, we begin hardware
— Datapath

Stages of execution
CPU overview
Building a datapath



Introduction

 CPU performance factors

— Instruction count
* Determined by ISA and compiler

— CPI and Cycle time
e Determined by CPU hardware
* We will examine three MIPS datapaths
— A simplified version
— An improved split design
— A more realistic pipelined version



Different Subsets
of Instructions

Memory reference: 1w, sw
Arithmetic/logical: add, sub, and, or, s1t
Control transfer: beq, j

Instructions executed in multiple steps
— Some steps are common to all instructions
— Some steps shared between subsets

— Some steps unique to single instruction



Five Stages of
Instruction Execution

Instruction fetch
Instruction decode
Execute

Memory access
Write back

Al S

We will formalize hardware for these stages after
Winter break. Until then, we’ll build parts as needed.



Instruction Fetch

 Fetch the instruction
— based on value stored in PC

* Prepare for next instruction
— Increment the PC



Instruction Decode

* Read registers from register file

e Calculate branch address




Execute

* Depending on instruction class

e Use ALU to calculate
— Arithmetic result (R-type)
— Memory address (lw,sw)

— Branch compare (beq, bne)

 PC < target address (faster branches)



Memory

e Store data into memory (sw)
 Read data from memory (lw)

e Other things happen here too

— Save results from R-type instructions




Write Back

e Store the data from memory into registers
(Iw)

— Similar to saving R-type results



Datapath Overview
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Multiplexers
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Multiplexers
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Control
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Building a Datapath

* Datapath

— Elements that process data and addresses
in the CPU

» Registers, ALUs, mux’s, memories, ...
 We will build a MIPS datapath incrementally
— Refining the overview design
— Consider how you will build your datapath!



Instruction Fetch
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R-Format Instructions

* Read two register operands
* Perform arithmetic/logical operation
* Write register result
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Load/Store Instructions

Read register operands

Calculate address using
16-bit offset

— Use ALU, but sign-extend
offset

MemWrite

Load: Read memory
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Store: Write register
value to memory
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Branch Instructions

* Read register operands

 Compare operands
— Use ALU, subtract and check Zero output

e Calculate target address
— Sign-extend displacement

— Shift left 2 places (word displacement)
—AddtoPC+4

* Already calculated by instruction fetch



Branch Instructions
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Composing the Elements

* First datapath does one instruction in one
clock cycle

— Each datapath element can only do one function
at a time

— Hence, we need separate instruction and data
memories
* Use multiplexers where alternate data sources
are used for different instructions



R-Type/Load/Store Datapath
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Full Datapath

PC

Add

PCSrc

Y

Read
address
Instruction

Instruction
memory

\ 4

Add

Read
register 1 Read
Read data 1
register 2
Registers

Write 9orer> Read
register data 2
Write

| data
RegWrite

16; Sign-

" | extend

ALU ALU
result

ALU
result

xcs

4 ALU operation

MemWrite

_ | Write

32

" | data

Address

Read
data

Data
memory

MemRead

MemtoReg




Performance Issues

Longest delay determines clock period
— Critical path: load instruction
— InstMem— RegFile— ALU— DataMem— RegFile

Not feasible to vary period for different
Instructions

Violates design principle
— Making the common case fast

We will improve performance in next version



Review and Questions

e Stages of execution
* CPU overview
* Building a datapath



Different Subsets
of Instructions

 Memory reference: 1w, sw
* Arithmetic/logical: add, sub, and, or, st
 Control transfer: beq



Two programs...

* Program 1 * Program 2
« Jw $t0 4($t1) « sub $s1 $s1 $s2
« add $t0 $t0 $t2 « sw $s1 0($t0)

 beq $t0 $zero exit « beqg $s1 $t2 Toop
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Datapath Exercise

* Trace instructions through datapath
— Label used datapath components
— Trace path through datapath

* Write your name at the top
* And the program you used



