CSSE232
Computer Architecture |

Class Status

* Reading
— Sections 4.1-3

* Project
— Project group milestone assighed
— Indicate who you want to work with
— Indicate who you don’t want to work with

— Due next Friday (before exam)

Review so far

 Performance
* |nstruction Sets (ISAs)

 MIPS assembly
— Register convention
— Procedure calls
— Alignment
— Exceptions

Outline

Today, we begin hardware
— Datapath

Stages of execution
CPU overview
Building a datapath

Introduction

 CPU performance factors

— Instruction count
* Determined by ISA and compiler

— CPI and Cycle time
e Determined by CPU hardware
* We will examine three MIPS datapaths
— A simplified version
— An improved split design
— A more realistic pipelined version

Different Subsets
of Instructions

Memory reference: 1w, sw
Arithmetic/logical: add, sub, and, or, s1t
Control transfer: beq, j

Instructions executed in multiple steps
— Some steps are common to all instructions
— Some steps shared between subsets

— Some steps unique to single instruction

Five Stages of
Instruction Execution

Instruction fetch
Instruction decode
Execute

Memory access
Write back

Al S

We will formalize hardware for these stages after
Winter break. Until then, we’ll build parts as needed.

Instruction Fetch

 Fetch the instruction
— based on value stored in PC

* Prepare for next instruction
— Increment the PC

Instruction Decode

* Read registers from register file

e Calculate branch address

Execute

* Depending on instruction class

e Use ALU to calculate
— Arithmetic result (R-type)
— Memory address (lw,sw)

— Branch compare (beq, bne)

 PC < target address (faster branches)

Memory

e Store data into memory (sw)
 Read data from memory (lw)

e Other things happen here too

— Save results from R-type instructions

Write Back

e Store the data from memory into registers
(Iw)

— Similar to saving R-type results

Datapath Overview

\

Add

A

Add

PC

Address Instruction

Instruction
memory

—

Data

Register #
Registers

Regqister #

Register #

Y

>ALU

\/

Address

Data

Data
memory

Multiplexers

t

Y
\>
o
o

/@

PC

Address Instruction

Instruction
memory

Can’t just join wires

ogether
= Use multiplexers

Add
N\
A
|-> Data j
Register #
Registers Address
L=
— Data]
memory

Reqister #
Reqister # (J ‘

Data

Multiplexers

PC

Y

Add

PCSrc

Y

Read
address
Instruction

Instruction
memory

Add

ALU
result

xc=s

4 ALU operation

MemWrite

Address

_ | Write

Read ALUSrc
register 1 Read -
Read data 1 -
register 2

Registers
Write 9" Read
register data 2 '\lf
Write X
data
RegWrite

.| Sign- 32

-

extend

Read
data

Data

" | data memory

MemRead

MemtoReg

Control

PC

Branch
T
N
M |-
u
T
4—»\ ? ' \

Add - Add M)

> o u [«

X <

_/
ALU operation
- Data |
o> Register # MemWrite
> Address Instruction e Registers ALU > Address
i M
- o> Register # y Zero Data
Instruction
. X memory
memory &> Register # RegWrite
> Data
MemRead

Control

111

Building a Datapath

* Datapath

— Elements that process data and addresses
in the CPU

» Registers, ALUs, mux’s, memories, ...
 We will build a MIPS datapath incrementally
— Refining the overview design
— Consider how you will build your datapath!

Instruction Fetch

Read
address

Instruction ——

Instruction
memory

R-Format Instructions

* Read two register operands
* Perform arithmetic/logical operation
* Write register result

-

2 | Read ALU operation
register 1 Read)
>
Register) 5 |Read data 1
numbers " | register 2
5 |write Registers » Data ALU ALY
S reqister result
N egiste Read
; data 2
outa { — e :
RegWrite

a. Reqisters b. ALU

Load/Store Instructions

Read register operands

Calculate address using
16-bit offset

— Use ALU, but sign-extend
offset

MemWrite

Load: Read memory
and update register

Store: Write register
value to memory

——1

——1

Address

Write
data

Read
data

Data
memory

MemRead

a. Data memory unit

Sign-
extend

b. Sign extension unit

Branch Instructions

* Read register operands

 Compare operands
— Use ALU, subtract and check Zero output

e Calculate target address
— Sign-extend displacement

— Shift left 2 places (word displacement)
—AddtoPC+4

* Already calculated by instruction fetch

Branch Instructions

PC +4 from instruction datapath —{

Instruction ‘

Y

Branch

Add Sum target

ALU operation

To branch
control logic

ALU Zero

Read
register 1 Read
Read data 1
register 2
Write Registers
register Read
Write data 2
data

RegWrite

16 _| Sign- 32

| extend

Composing the Elements

* First datapath does one instruction in one
clock cycle

— Each datapath element can only do one function
at a time

— Hence, we need separate instruction and data
memories
* Use multiplexers where alternate data sources
are used for different instructions

R-Type/Load/Store Datapath

MemWrite

Address

Write
data

Read

Y

data

\/

Data
memory

.| Read ALU operation
register 1 Read
Read data 1 o
Instruction | register 2 ALUSrc
_ Registers g4 ALU ALU
! Write data 2 0 result
register "If
»| Write > 1X
data
RegWrite g
\6 Sign- 32
A

| extend

MemRead

MemtoReg

Oxec=—

Full Datapath

PC

Add

PCSrc

Y

Read
address
Instruction

Instruction
memory

\ 4

Add

Read
register 1 Read
Read data 1
register 2
Registers

Write 9orer> Read
register data 2
Write

| data
RegWrite

16; Sign-

" | extend

ALU ALU
result

ALU
result

xcs

4 ALU operation

MemWrite

_ | Write

32

" | data

Address

Read
data

Data
memory

MemRead

MemtoReg

Performance Issues

Longest delay determines clock period
— Critical path: load instruction
— InstMem— RegFile— ALU— DataMem— RegFile

Not feasible to vary period for different
Instructions

Violates design principle
— Making the common case fast

We will improve performance in next version

Review and Questions

e Stages of execution
* CPU overview
* Building a datapath

Different Subsets
of Instructions

 Memory reference: 1w, sw
* Arithmetic/logical: add, sub, and, or, st
 Control transfer: beq

Two programs...

* Program 1 * Program 2
« Jw $t0 4($t1) « sub $s1 $s1 $s2
« add $t0 $t0 $t2 « sw $s1 0($t0)

 beq $t0 $zero exit « beqg $s1 $t2 Toop

Blank Datap

ath

1

l

PCSrc
M
> u
> X

5

Datapath Exercise

* Trace instructions through datapath
— Label used datapath components
— Trace path through datapath

* Write your name at the top
* And the program you used

