CSSE 232
Computer Architecture |

Running a Program

Class Status

Reading for today
e 212,213, 2.14, B.1-5

15

Outline

Compilers

Assemblers

Linkers

Loaders

15

Translation and Startup in C

| Assembly language program |

Assembler

| Object: Machine language module | | Object: Library routine (machine language)

N

| Executable: Machine language program |

/15

Compiliers

e Early software was written primarily in assembly language
e Limited memory
e Definition of compiler:
A program (set of programs) that transforms high level source
code written within a programming language (such as C) to
assembly

5/15

Compiliers

e First compiler written by Grace Hopper for the A-0
programming language (1952)
e The compiler itself was written using assembly language

o First self-hosting compiler developed in a high level language
was for the Lisp (1962)
e Usually written in the language that they compile

e C compiler written in C
e First compiler for a language would have to be compiled in
another compiler (bootstrapping problem)

6

15

Compiler Structure

Input is high level code (C, etc.)
Checks syntax and semantics, performs type checks

e Generates errors

Optimizes code

Translates the optimized code into assembly code

e You can make a compiler in CSSE 404: Compiler
Construction!

15

Assembler

e Translates the assembly language into the appropriate binary
equivalents (object file)

e Most assembler instructions represent machine instructions
one-to-one

e Pseudo-instructions: figments of the assembler’s imagination
e $at (register 1): assembler temporary

move $t0, $ti — add $t0, $zero, $t1

slt $at, $t0, $t1

blt $t0, $t1, L
$ $ bne $at, $zero, L

15

Object Files

e Determine the addresses corresponding to the different labels

e Object file contains

Object File Header: described contents of object module

Text segment: translated instructions

Static data segment: data allocated for the life of the program
Relocation info: for contents that depend on absolute location
of loaded program

Symbol table: global definitions and external refs

Debug info: for associating with source code

Linker

e Links object files together to produce an executable image

o Merges segments

o Resolve labels (determine their addresses) - example in
branches and jumps

e Patch internal and external references

e Determine memory locations each module will occupy

e Executable file has same format as object file but with no
unresolved references

10/15

Dynamic Linking

e Only link/load library procedure when it is called
¢ Windows: Dynamic Link Library (dll)
e Unix: Shared Object (so)
e Different from static linking
e Requires procedure code to be relocatable
e Avoids image bloat caused by static linking of all (transitively)
referenced libraries
e Can automatically use new library versions

11/15

Loading a Program

e Load from image file on disk into memory

@ Read header to determine segment sizes

@® Create virtual address space
© Copy text and initialized data into memory

e Or set page table entries so they can be faulted in
@ Set up arguments on stack

@ Initialize registers (including $sp, $fp, $gp)
@ Jump to startup routine

e Copies arguments to $a0, ...and calls main
e When main returns, do exit syscall

12 /15

Review and Questions

Compilers

Assemblers

Linkers

Loaders

13 /15

Program demo

Demo of compiling, assembling, and linking

14 /15

Project

Project details on website

e Write assembly code for the relprime() function.

15/15

