CSSE 232

Computer Architecture |

Procedures |

Class Status

Reading for today

e 238
e B.6

29

Outline

e Big immediates and $at
e Procedure steps

e Instructions

o Register review

e Spilling registers

e Stack and frames

e Examples

29

Big Immediates and $at

1w $t1, A($t1)
e Read the value from memory at address (A 4+ $t1 contents)
and store result in register $t1.
e 1w is an |-type instruction. |-types support 16 bit immediate

values.
e How is 1w handled if A is a 16 bit address?

29

Big Immediates and $at

1w $t1, A($tl)

e Read the value from memory at address (A 4+ $t1 contents)
and store result in register $t1.
e 1w is an |-type instruction. |-types support 16 bit immediate
values.
e How is 1w handled if A is a 16 bit address?
o |-types support 16 bit immediate, so no problem
e What if A is a 32-bit address?

29

Big Immediates and $at

1w $t1, A($tl)

e Read the value from memory at address (A 4+ $t1 contents)
and store result in register $t1.

e 1w is an |-type instruction. |-types support 16 bit immediate
values.
e How is 1w handled if A is a 16 bit address?
o |-types support 16 bit immediate, so no problem
e What if A is a 32-bit address?
o |-types only support 16 bit immediates, so load in two steps

e Load upper 16 bits with 1ui
e Load lower 16 bits with ori or clever use of 1w

29

Why do we need Procedures/Functions?

/29

Why do we need Procedures/Functions?

Breaks code into small sections

Gives code defined boundaries

e More manageable

Easier to modify

Easier to maintain

Reusable

5/29

Procedure calling

int main() {

int a=1; int b = 2; int add(int x, int y) {
int ¢ = add(a, b); return x + y;
return 2 *x c; }

}

e Steps required
@ Place parameters in registers
® Transfer control to procedure
© Acquire storage for procedure
@ Perform procedure's operations
@ Place result in register for caller
@ Return to place of call

6/29

Procedure Call Instructions

e Procedure call: jump and link
jal Procedurelabel
e Address of following instruction put in $ra
e Jumps to target address

e Procedure return: jump register
jr $ra
e Sets the address in $ra as the next instruction

Procedure Call Instructions

e jal ProcedureLabel: jump and link

e Wipes out $ra, puts a new value in (new return address)
e Old return address is lost!

e What should we do?

29

Procedure Call Instructions

e jal ProcedureLabel: jump and link

e Wipes out $ra, puts a new value in (new return address)
e Old return address is lost!

e What should we do?

e Save return address somewhere...

29

Procedure Call Instructions

jal ProcedureLabel: jump and link

e Wipes out $ra, puts a new value in (new return address)
e Old return address is lost!

What should we do?

Save return address somewhere...

Stack would probably be good

29

Program Counter (PC)

Special register which holds the address of the next instruction

The jal instruction saves PC + 4 in $ra

29

System and Call Registers

Register # Register Name Description

0 Zero Hardwired to zero
1 at Reserved for assembler
2
v Return values from procedure calls
3 vl
4 a0
5 al
6 a2 Arguments passed to procedure calls
7 a3

10/29

Temporary Registers

Register # Register Name

Description

8
9
10
11
12
13
14
15

t0
tl
t2
t3
t4
tb
t6
t7

Temporary values, caller saves

11/29

Save Registers

Register # Register Name

Description

16
17
18
19
20
21
22
23

sO
sl
s2
s3
s4
sb
sb
s’

Saved values, callee saves

12/29

Temporary and System Registers

Register # Register Name

Description

24
25
26
27
28
29
30
31

t8
t9
k0
k1
gp
sp
fp
ra

Temporary values caller saves

Reserved for OS kernel

Pointer to global area
Stack pointer

Frame pointer

Return address

13 /29

Register Use

e MIPS has 10 $t registers, 8 $s registers
e What if a program needs more than 18 registers?

14 /29

Register Use

e MIPS has 10 $t registers, 8 $s registers
e What if a program needs more than 18 registers?
e Store in memory when not in use (spilling registers)

14 /29

Register Use

MIPS has 10 $t registers, 8 $s registers
What if a program needs more than 18 registers?
e Store in memory when not in use (spilling registers)

What if a program uses all 18 registers, then calls a procedure?

Can that procedure only use the $an and $vn registers?

14 /29

Register Use

MIPS has 10 $t registers, 8 $s registers
What if a program needs more than 18 registers?
e Store in memory when not in use (spilling registers)

What if a program uses all 18 registers, then calls a procedure?

Can that procedure only use the $an and $vn registers?
e Save caller’s registers in memory?

14 /29

Register Use

MIPS has 10 $t registers, 8 $s registers
What if a program needs more than 18 registers?
e Store in memory when not in use (spilling registers)

What if a program uses all 18 registers, then calls a procedure?

Can that procedure only use the $an and $vn registers?
e Save caller’s registers in memory?

We can define a 'stack’ of memory to save registers

14 /29

Spilling registers

e Stack
e Push
e Pop
e Stack pointer (register 29)
e Grow from higher addresses to lower addresses

e Push values : subtract from stack pointer!!!
e Pop values : add to stack pointer!!!

15/29

Stack Layout

$sp— 7Fff fifcy,

$gp— 1000 8000,,,
1000 000044,

pc— 0040 0000,
0

Stack

f

Dynamic data

Static data

Text

Reserved

16 /29

Stack Frames

e Also called an activation record or procedure frame

e Segment of stack containing a procedure’s saved registers and
local variables

e Also used for extra arguments

e Frame pointer ($£p) points to the first word of the frame of a
procedure

e Stack pointer ($sp) and frame pointer ($fp) define the
bounds of the stack frame

17 /29

Argument conventions

e If the procedure takes four or less arguments
e Place arguments in $a0-$a3
o If the procedure takes more than four arguments

Place first four arguments in $a0-$a3
Place extra arguments on stack in order
Procedure uses $sp to locate extra arguments

This is a simplified convention, actual MIPS programs use a more
complex convention.

18 /29

Stack Allocation During Call

High address
$fp—

$sp—

Low address

$fp—

$sp—

Before

$fp—

$sp—~

Saved argument
registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and
structures (if any)

During

After

19/29

Register Use

e Caller function uses $tn and $sn registers
e Callee function also uses $tn and $sn registers

e Must avoid overwriting other procedure's register data

e Can save register values on stack
o Use register for whatever is needed
e Restore value when done using

20/29

Register Use

Backup $s registers before using

Restore $s registers before returning to caller
e Caller should never notice any changes!

o Never assume $t registers are valid across calls
Backup if needed (on stack)

21/29

Call conventions

When procedure begins:
e Save $sn before using

Before making a call (i.e. before using jal):
e Save $ra
e Save $tn, $an, and $vn if needed

After making a call:

e Restore $ra

e Restore $tn, $an, and $vn if needed
o Before returning to caller:

o Restore $sn if used
e Restore $sp before returning (i.e. before using jr $ra)

Procedure Call

int main() {
int w, x, y;

Assume w, x are stored in
//put values in w and x $t0,$t1 and y is stored in
y = leaf_example(w, x);
y=w + vy, $SO

}

23 /29

Procedure Call - just the call

int main() {

int w, x,
//put values in w and x
leaf_example(w, x);

yi

#put a value in x
$t0,
$t1,

0 #put w in arg reg
0 #put x in arg reg

leaf_example #make procedure call
0 #put return value in vy

y:

y=w+y;
}

main:

addi $a0,

addi $ail,

jal

addi $s0,

add $s0,

jr $ra

$vo,
$t1,

$s0 #compute new y

Assume w, x are stored in
$t0,$t1 and y is stored in
$s0.

24/29

Procedure Call - just the call

int main() {
int w, y;
//put values

X,
in w and x

y = leaf_example(w, x);
y=w+y;

}
main:
. #put a value in x
addi $a0, $t0, O #put w in arg reg
addi $a1, $t1, O #put x in arg reg
jal leaf_example #make procedure call
addi $s0, $v0o, O #put return value
add $s0, $t1, $s0 #compute new vy
jr $ra

First try... still need to save $t1...

Assume w, x are stored in
$t0,$t1 and y is stored in
$s0.

in vy

24 /29

Procedure Call - save $t0

int main() {
int w, v;
//put values

X,
in w and x

y = leaf_example(w, x);
y=w+y;

}
main:
. #put a value in x
addi $sp, $sp, —4 #adjust stack to save
sw $t0, 4($sp) #save t0 for later
addi $a0, $t0, O #put w in arg reg
addi $a1, $t1, O #put x in arg reg
jal leaf_example #make procedure call
Iw $t0, 4($sp) #restore t0
addi $s0, $vo, O #put return value in
add $s0, $t1, $s0 #compute new vy
addi $sp, $sp, 4 H#restore stack pointer
jr $ra

Assume w, x are stored in
$t0,$t1 and y is stored in
$s0.

a value

y

25 /29

Procedure Call - save $t0

int main() {
int w, x, y;

//put values in w and x

y = leaf_example(w, x);
y=w+y;

}
main:
. #put a value in x
addi $sp, $sp, —4 #adjust stack to save
sw $t0, 4($sp) #save t0 for later
addi $a0, $t0, O #put w in arg reg
addi $a1, $t1, O #put x in arg reg
jal leaf_example #make procedure call
Iw $t0, 4($sp) #restore t0
addi $s0, $vo, O #put return value in
add $s0, $t1, $s0 #compute new vy
addi $sp, $sp, 4 H#restore stack pointer
jr $ra

Now, add the $s0 save/restore...

Assume w, x are stored in
$t0,$t1 and y is stored in
$s0.

a value

y

25 /29

Procedure Call - save $s0

int main() {

int w, x, y; Assume w, x are stored in
//put values in w and x $t0,$t1 and y is stored in
y = leaf_example(w, x);
y=w+y,;
}
main:

#put a value in x

addi $sp, $sp, —8 #adjust stack to save 2 values

sw $s0, O($sp) #save sO before using
sw $t0, 4($sp) #save t0 for later
addi $a0, $t0, O #put w in arg reg

addi $a1l, $t1, O #put x in arg reg

jal leaf_example #make procedure call
Iw $t0, 4($sp) #restore t0

addi $s0, $vOo, O #put return value in y
add $s0, $t1, $s0 #compute new vy

Ilw $s0, 0($sp) #restore sO
addi $sp, $sp, 8 Frestore stack pointer
jr $ra

$s0.

26 /29

Procedure Call - save $s0

int main() {

int w, x, y; Assume w, x are stored in
//put values in w and x $t0,$t1 and vy is stored in
y = leaf_example(w, x);
y=w “+ y; $SO
}
main:

#put a value in x
addi $sp, $sp, —8 #adjust stack to save 2 values
sw $s0, 0($sp) #save sO before using
sw $t0, 4($sp) #save t0 for later
addi $a0, $t0, O #put w in arg reg
addi $a1l, $t1, O #put x in arg reg
jal leaf_example #make procedure call
Iw $t0, 4($sp) #restore t0
addi $s0, $vOo, O #put return value in y
add $s0, $t1, $s0 #compute new vy

Ilw $s0, 0($sp) #restore sO
addi $sp, $sp, 8 Frestore stack pointer

jr $ra

Finally, let's add in the $ra save...

26 /29

Procedure Call - save $ra

int main() {
int w, x, y;
//put values in w and x
y = leaf_example(w, x);
y=wv+y;

main:
#put a value in x

Assume w, x are stored in
$t0,$t1 and y is stored in
$s0.

addi $sp, $sp, —12 #adjust stack to save 3 values

sw $s0, 0($sp) #save sO before
sw $t0, 4($sp) #save t0 for
sw $ra, 8($sp) #save ra before jump

addi $a0, $t0, O #put w in
addi $a1, $t1, O #put x in

jal leaf_example #make procedure call
Iw $t0, 4($sp) #restore t0
addi $s0, $vOo, O #put return
add $s0, $t1, $s0 #compute new vy

Iw $s0, 0($sp) #restore s0
Iw $ra, 8($sp) #restore ra

y

addi $sp, $sp, 12 #restore stack pointer

jr $ra

27/29

Procedure Body

int leaf_example(int a, int b)

t Where are a and b stored?
int c, d; .
c = 5 Assume ¢ must be stored in
d=a+ b +c; $s0 and d is stored in $t0.
;e-’.curn d;

}

28 /29

Procedure Body

int leaf_example(int a, int b)

t Where are a and b stored?
int c, d; .
c = 5 Assume ¢ must be stored in
d=a+ b +c; $s0 and d is stored in $t0.
lle.’.curn d;

}

Leaf_example:

addi $sp, $sp, —4 #adjust stack for 1 value

sw $s0, O0($sp) #place sO contents on stack

addi $s0, $zero, 5 #s0 gets 5

add $t0, $a0, $al #add arguments a + b, store in temp
add $t0, $t0, $s0 #add temp + c, store in sO

addi $v0o, $to, O #move return to tO

lw $s0, O($sp) #restore sO

addi $sp, $sp, 4 #restore stack pionter

jr $ra #return to line after call

28/29

Questions?

e Big immediates and $at
e Procedure steps

e Instructions

o Register review

e Spilling registers

e Stack and frames

e Examples

29 /29

