TEAMLILAC

LILAK

ASSEMBLY ARCHITECTURE

LILAKILLER
MICROPROCESSER

ASSEMBLY ARCHITECTURE

o i/
DBl) 24 \]
/ . 29 e
-+ TN VR Pz o~ “r
s : y - . «g‘ -
&> ¥ 'é 4 (4 » ; ""
A
- &
J't 'y

A
Al o
ST v
» ,’;
&
- +
1 YASW) o
Pt = A
> ’W“\ +
. _, !
4 {*",i‘t I‘\
7) £ 4.5 -4
g | -,lv ?8) \ r e \4,
{ : -
7 ety F
B
N8 AN
—
> 3 N | S y - v
» v'l’.'-"\'" A x.
PN ot 4 ' A " }’
o S ;) ¥
d
i g Y

TABLE OF CONTENTS

INTRODUCTION & OVERVIENW
DESCRIPTION
FEATURES AND APPLICATIONS
OVERVIEW

LILAK SPECIFICATIONS
DATA FORMAT
PROCESSOR RESOURCES
INSTRUCTION SET
INSTRUCTION TYPES

DATA PATH

PIPELINING

THE DATA PATH

HARDWARE INTEGRATION

REGISTER TRANSFER LANGUAGE
TESTING
DATA PATH
ASSEMBLER/COMPILER
CONCLUSION

PPy b ww W PO RO OO N e

LILAKILLER
MICROPROCESSER

LILAK

ASSEMBLY ARCHITECTURE

DESCRIPTION FEATURES

LilaK (LilaKILLER) is an assembly based processor with a load-store architecture The LilaKiller microprocessor has a few of these defining features:
that utilizes a minimalist core instruction set and a majority of pseudocode » Five-stage pipeline architecture.

implementation to simplify the user experience and allow for better » Considerable collection of pseudoinstructions.

understanding of a program. The language provides an easy-to-read user Fully-functional Python assembler and compiler.

interface through descriptive instruction calls for new or less experienced

programmers. APPLICATIONS

The processor uses a 16-bit address bus and a 16-bit data bus to execute

programs stored in an external memory location and is able to take in basic, The LilaK microprocessor has the following applications:
16-bit inputs and output the resulting data of internal computations. LilaK can * Aid in student-learning about machines & machine code.
be used in cases of general computations and supports parameterized and * Run small, simple programs including, but not limited to:
nested procedures. ° Loops

o Parametrized functions

PSS (e | * CSirctny Lo 4 Zorohmo'vy Mo :

A2 .
— MtoW RegFile_16b
PO RaDAAN 15 0] I O iy 5.0 Qe ow 0 ne
£ Qud { &= D at M m ry CK aw b) e 0 e 0O 00RO
e aMemo
W e a4 MorRoac -~ - (0] RO RNROR Q] M) i b e e e R a0 C om0
an DRDMIO N 15.0) ' e Unoet3 ("2 1) . - =) Sl |
Mo TRedDa - MearrArie AN~ 1% . R) 2aANOR e | (30 i v\ R e ST
=~:.~~'_\:-:,:,"_~.:,E "1 ‘: ’E arwed O el Q) by U .——'q-_ :“:‘.‘VJ:F_- ® a8 . = ::-_' y j.%ﬁ‘,"r_ O S Lo WY e 24 —.".‘_c‘i‘-' | M U X 4x2 1 6b
- i — —
M ERNegOMNIO N 150)
—— S ——— S BE—— N o — M WIS
Mo TReaDC -:'IB*ZrE e e Undedd T 2 0} L— W Dxatinos - ReqVeiioNeg o ’ et - v
L ZABOW (30|
' pe—— ORS00 MY R BG RO] | . ol im0 npuit(Maa)
FOrWaroCorol A1 Cp—E arwed Oon (0 0) — _'
~ | | b n | A 2 0 & LT VI |
| S L S
| — . n -Yo-ll’..'l]
{ u o 4 . 3N
E— L) [t DataMemoryP rep e e] — "o |
[l .-, A . 3 ﬁh):vu-n“ MainearOuld 0) b A) MsareCutou (™ 0) 3 é Cambok 10y
:_ N ' =~ | — vl "0 1 ALLI Ol 2)
S) P ‘ + e Mgty In I Ve il | 3 -
Reg'Wme L Winn S— g
. - r— . —_—
AL 4 | Al in
RegDesy3n) Arit w10) - N _ . ’
gl —t— - Pam— Mo TORGMVY (1.0} Mo TR QWO 110] M T Mgy (1. 0}
RogDat 15.0 jampd oy Wt g (™2) mead1m | aForwar D3 0) E ol e L Lwuad MU X 2)(1 16b
LT T B E :;‘:l'h;\::\;: 30 pCDataM Ux ;C‘“:Ql‘:i l:}E",:‘A a0 1,0 :C.J:\;n: ‘-...
b TN U _ag ' ARG g - Py . ok & TS P s W
A POWMDAY 15.0] Cuipus(19.0) Exuse — +t
e — === rwun(s -'IE--l_
S—
pu (™0 E —
Coandng I | |
F dunit RegDestMU X
ForwaroComol A ':_E rveed AT 0) M0V Mg Wi e R0 ReAROR g RegDes 3 03 upuil 0] Qe deeeeee ROQOCR 0NN
MOW Mg Wie $eeeee RO R0 reAut L) t
g M1) [——F==s 2FOrwarcDt(3 0) Pescdowa
- - am PCSnc
e a1) [—F=s DFCr w3 0)
N
oM gt l? X3 0 s
ForwaroComol 841 C)—S Crveed 50 L OMLW g ML 0) [—Fm=s ARO'W(3 0|

Figure 1: Full LilaK Circuit (Xilinx)

OVERVIENW

Lilak is intended for use by new or less experienced programmers. The language is similar to other load and store architectures such as MIPS and ARM, but has additional implemented
features and design goals. The easy-to-read and simple instruction set and pseudoinstructions along with a very involved and sophisticated assembler and compiler program allows the
programmer to just focus on and learn with the program in front of them. The pipelined, load and store architecture is intended to shorten the necessary processing time and to save
space in the data path.

LILAK

ASSEMBLY ARCHITECTURE

DATA FORMAT

The LilaKiller processor defines a 16-bit word, and 8-bit halfwords. The byte

ordering is Little-Endian, with the most significant bit being stored at the
highest address in memory.

PROCESSOR RESOURCES

LilaKiller uses sixteen 16-bit data registers. Eleven of these registers are intended to be used by the
programmer. The remaining seven are only to be used by the assembler & memory operations outside of
the scope of the programmer. The register list is found in Figure 2.

REGISTER NUMBER || REGISTER NAME | | REGISTER DESCRIPTION | | 'y =Pt iE?
0 $zero Hardcoded Zero N/A
1 $ra Return Address Yes
2 $stack Stack Pointer Yes
3 $global Global Pointer Yes
4 $frame Frame Pointer Yes
5 $in Input Register No
é $a0 Assembler Use Regs. No
7-8 $fa0, $fal Procedure Arg. Regs. No
9-10 $fr0, $frl Procedure Return Regs. No
n-12 $v0, $vi Temp. Value Regs No
13-15 $sv0 - $sv2 Saved Temp. Value Regs. Yes

Figure 2: Register Table

The LiloK processor utilizes PC-relative addressing for all operations, with the exception of jump
instructions that utilize PC-direct addressing.

INSTRUCTION TYPES

Despite the LilaK processor only having two instruction sets, the processor features a surplus of beginner
and intermediate instructions that fit within the boundaries of the types.

Load & Store instructions are how LilaK moves data to and from memory and the programmer-
accessible registers. These instructions are of the A-type.

Computational instructions are how LilaK performs arithmetic, logical, and other general mathematical
instructions like multiplication and division. These operations occur on value registers, but the pseudo-
instruction-heavy design of LilaK allows the programmer to do computations using immediate values as
well. All computational instructions are A-type.

Jump & Branch instructions are how LilaK changes the location of the program counter in the code.
LilaK jump instructions utilize PC-direct addressing, whereas branching instructions use PC-relative
addressing. Both jump and branch instructions are still A-types.

Set instructions are the only V-types of the LilaK assembly language. Set allows the programmer to
directly set the result register to a specified immediate value.

Psuedo instructions are the bread and butter of the LilaK processor. With the intention of beginner
programmer use and an ease into learning machine language, the goal of LilaK's heavy pseudo
instruction arsenal is to help bridge an understanding between human language and machine
language. Such pseudo instructions involving values, like addval & subtractval, utilize the assembler
registers to allow addition and subtraction of immediate values.

LILAKILLER

MICROPROCESSER

A'TYPE ARITHMETIC & LOGIC

‘ OP ra rb rr ‘
4 bits 4 bits 4 bits 4 bits

V'TYPE VALUE SETTING

‘ OP value rr ‘
4 bits 8 bits 4 bits

INSTRUCTION SET

All LiloKiller instructions are 16-bits (single word) long. This smaller architecture

is intended to help introductary programmers with understanding the

relationships between human and machine language. The length of the

opcode in the processor is four bits, allowing up to 16 different instructions.

The instruction set descriptions can be found in Figure 3.

INSTRUCTION SYNTAX EXAMPLE RESULT
add add $regl, $reg2, $regd Pregl + $reg2 -> $reg3
subtract $regl - $reg2 -> $reg3

subtract $regl, $reg2, $reg3

multiply multiply $regl, $reg?2, $reg3
divide divide $regl, $reg2, $reg3
set set value, $regl
and and $regl, $reg?2, $reg3
or or $regl, $reg?2, $reg3
less than lessthan $regl, $reg?2, $reg3

greater than

eq ual to equalto $regl, $reg2, $reg3
jump jump $regl
store store $regl, $reg?2
load load $regl, $reg?2

branch on equal brancheq $regl, $zero, $reg?2

jump and link jumpandlink $reg

greaterthan $regl, $reg2, $reg3

$regl * $reg2 -> $reg3
$regl / $reg2 -> $reg3

value -> $reg]

$regl && $reg?2 -> $reg3

$regl || $reg?2 -> $reg3

if (Bregl < $reg2); 1 = $reg3if
true, 0 = $reg3 if false.

if ($regl > $reg2); 1 = $reg3 if
true, 0 = $reg3 if false.

if ($regl == $reg2); 1 = $reg3if

true, 0 = $reg3 if false.

$regl -> PC
$reg2 -> Mem[$regl]

Mem[$regl] -> $reg?2

If ($regl == $zero):

PC + 2 + 2($reg2) = PC if true, no

change = PC if false

PC + 2 -> $ra
$regl -> PC

Figure 3: LilaK Instructions

LILAK

ASSEMBLY ARCHITECTURE

THE DATA PATH PIPELINE

LILAKILLER
MICROPROCESSER

To help describe the process of the LilaK pipeline, our team designed a data The LiloK microprocessor utilizes a five-stage execution pipeline, diagram

path diagram that illustrates the five stages of the pipeline. shown in Figure 4. Each pipeline stage takes one MasterClock cycle to

execute. LilaK does not have any other clock architecture implemented.

Below is the five-stage execution pipeline, diagram shown in Figure 4. There is also no latency. Once the pipeline has been completely filled, five

instructions will be executing (moving through the pipeline) simultaneously.

THE FIVE STAGES While the pipeline is not being stalled, the processor has a throughput of

Pipelining processors allows the core to execute an instruction every cycle. As
the pipeline length increases, the amount of work done at each stage is
reduced, which allows the processor to attain a higher operating frequency.

This in turn, increases the performance.” the pipeline.

The five stages of our pipeline are as follows:
e Fetch
e Decode
e Execute

e Memory DX
Writeback W XM

M Control M W

M—-W

one instruction per MasterClock cycle. The LilaK pipeline, regardless of
stalls, is in-order in every step of it's operation: issuance, execution, and
completion of instructions are all done in the order of which they entered to

] —| X M W

F—D Ty [MemWrite_ I

" Branch L RepWri
Block

.
T

c . | t f
Registers overflow
zero
U]

read register 1 read 0

Instruction Memory . data 1 1

(74 read register 2 5

al p a 2

PC : ‘ “>ALU

read register 3 2

gister3 read 1 \ E T‘J‘
data 2 0 y 1
— 2 Data Memory
cad
0 write registe ain3 /—1\ 1 f
e register data 3 I address read
—\! data O
Input output 2
5 k2
. - I . e
— Write data ! l
‘ 2
‘ -\ 3
write data

. Forwarding Unit L
clk clk—! :?‘ clk — clk—| I~

@ |
PCData "

Figure 4: LiloK Data Path

HARDWARE INTEGRATION REGISTER TRANSFER LANGUAGE

A specific integration plan for building the data path was used in order to ensure The summary of the LilaK RTL is found in Figure 5 below.

Thehef:]iciency ;:m;:l ijdbih’riis of each of the hardware components combined ‘“""s”':::::é:;’ﬂt}:éS"'s"::i'u‘“"'°"' SET JUMP STORE LOAD BRANCH ON EQUAL || JUMP AND LINK

with the rest ot the data path.

The data path was built in subsystems, where each stage of the pipeline data path INSTRDATA = MEM[PC]

is a subsystem, and the subsystems are connected by stage to stage register files F PC=PC+2

to transfer data between each of the subsystems. These register files were built,

tested, and integrated separately from the rest of the system. A = REG[INSTRDATA[11-81]

Once all of the subsystems, except for the Write Back stage, were correctly B = REG[INSTRDATA[7-4]]

implemented and fully tested independent of each other, the subsystems were D C = REGIINSTRDATA[3-0]]

combined one by one with the stage to stage register files to form the full data CURRENTADDRESS = PC

path which was tested as one, full unit. The Write Back stage was implemented BRANCH=A==B

while combining subsystems to simplify the process. The control unit was added

and more tests were run on the fully integrated system including the control signals. ALURESULT = A OP B N rxrErs ALURESULT = PC +

This planned integration plan greatly simplified the testing and debugging process X [INSTRDATA[1-41] 2(C)

and made it much easier to locate errors as the pipeline was being constructed.

The sizes of the planned subsystems worked out well and leaving the stage to MEM[A] = | MEMOUT

stage register files to develop, test, and integrate last was the right decision for M B = MEM[A]

the group. It also allowed for the integration of additional hardware components

that the team realized were necessary during the development process. W REG[INSTRDATA[3-01] REGEI;{Z;;!:ATA _— oC = ALURESULT CURIEEEC:‘[:ARDA;;ESS
= ALURESULT LOADVALUE DC = A

Figure 5: RTL Summary Table

*Source: https://www.sciencedirect.com/topics/computer-science /stage-pipeline#:™ :text=The%20pipeline%20allows%20the%20core,in%20turn%20increases%20the%20performance.

LILAK

ASSEMBLY ARCHITECTURE

TESTING

For testing our components, we initially created all of our
components in Xilinx as schematics and Verilog files and
tested their functionality individually with Verilog test fixtures.
We tried to test for every possible scenario in these initial tests
so that there weren't trivial errors down the road that went
undetected. We combined our components into subsystems,
mainly the four stages that are in between our register files, so
a Fetch stage, Decode stage, Execute stage, and Memory
stage. We then tested these by imitating instructions passing
through them and testing all of the control bits as well as
outputs that result from these instructions. After thoroughly
testing each substage, we combined them into smaller versions
of our datapath and tested these as well. This is where we
discovered and corrected many of the small bugs within our
design and refined our architecture as a whole. Once we got
the entire datapath implemented, the testing was less in
Verilog and more in analyzing the waveforms and deciphering
what each instruction should be doing at what stage.

RegWriteDataln = 2;
WriteRegister = 11; // Wr
RegWritelIn = 1;
#PERIOD; // Now Deco
RegWriteDataIn = 5
WriteRegister = 12;
#PERIOD;

RegWriteIn = 0;

#PERIOD;

ALL FINAL VALUES SHOULD BE OUTPUTTED HERE @230ns?
if (rr == 11)
Sdisplay("rr is 11. PASSED. 1 c: %d", clockval):
else begin
Sdisplay("rr is not 11. FAILED", raout):;
counter = counter + 1
end
if (MemRead == 0 && MemWrite == 0 && RegWriteOut == 1 && RegDest == 0 && RegData == 0 && PCSrc == 0 && MemToReg == 0)
sdisplay ("C t t test for set $v0, 2 PASSED") ;
else begi
Sdisplay("Control its test fco set $vO0, : FAILED");
counter = counter + 1
end
ED");
e € € F ")
COMPLETED
Sdisplay , clockval):;
else begin
Sdisplay("rr is not 12. FAILED", raout):;

counter = counter + 1;

end

6,750 ns 6,800 ns

1 Reset

1% ck

B Fetch-PC[15:0] ¥] b
B Fetch-InstrData[15:0] | oc 7. 8ded |
W& TRUE-PC £

Mg Szero

g vo

llllllllll

I —

]
g v X
Bg svo (a) sC

,,]

]

]

]

g svi(b)

g sv2

B in

Mg global C
B out X
.

» B Outputvalue[15:0] | x
» Mg a0

Y Y Yy Yy YYYYYYY

v

6,900 ns

6,950 ns

1:[1

Frr

LILAKILLER
MICROPROCESSER

ASSEMBLER/COMPILER FUNCTIONALITY

The assembler reads in each line of the program and translate all

pseudoinstructions into their multi-instruction equivalent and then adds nops
wherever necessary depending on the instruction and the hazard prevention
logic. The assembler uses the specified $a0 register that is reserved for only the
assembler. The compiler then translates all the instructions into hexadecimal
and binary values. These binary values are written line by line into a separate
text file which is automatically loaded into the instruction memory block in the
data path. The hexadecimal values are printed to the console for debugging
purposes and for the use of the programmer.

The assembler was written in Python because the language has good string
manipulation and list comprehension features. It was also a familiar language to the
team and easily accessible.

ASSEMBLER/COMPILER CODE SNIPPET

Below is a code-snippet from the assembler and compiler program, written by Dillon
Duff. (Figure 5)

The three "types" of instructions in LilaK assembly architecture: V-Type instructions, A-
Type instructions, and pseudoinstructions, are all translated and converted into their
own separate functions before the full translation process. Below is the code for the
V-Type and A-Type conversions.

f convert_za_type(instr):
converted = [x if x not in a_type and x not in a_type_dict.keys() else a_type_dict[x] for x in instr]
if instr[@] == "store

converted.append(converted[2])

converted[3] =

return '@x' + ''.join(converted)
elif instr[@] == "jump":

return '@x' + converted[@] + converted[l] + "@@"
elif instr[@] == "jumpandlink":

return '@x' + converted[@] + converted[1l] + "@@"
elif instr[@] == "load":

return '@x' + converted[@] + converted[l] + "8" + converted[2]
return 'Ox' + join{converted)

f convert_v_type(instr)

instr = [str(inst).replace(",", "") for inst in instr]
hex_string = str(hex(int(instr[1]))).replace("x", "")

hex_string = hex_string[l::]

if len(hex_string) == 2:
DGss

elif len(hex_string) == 1:

~

hex_string = "@" + hex_string
int(f"ERROR: This is not length 1 or 2 in hex... :{hex_string}")
hex_string = hex _string.upper()
— g o [

return f"@x7{hex_string}{a_type_dict[instr[2].replace('%", "')1}"

Figure 5: Assembler Conversion Code Snippet

CONCLUSION

Building and developing a new processor was a great experience academically as
well as professionally. The team was required to learn and develop new knowledge
and skills during the development of the project and this taught everyone how to find
necessary information without a lot of additional assistance or provided resources.
The team is proud of the final processor and program. With a little bit of extra time,
the team would add a new hazard unit that is much more involved than the current
solution to hazards in the program and edit the current forwarding unit to work much
better and to account for all instructions and possible situations. The current design
already accounts for and is prepared to implement a new hazard unit, so a new block
would just have to be made and integrated into the final data path. The majority of
the problems the team encountered during the completion of the project had to do
with weird Xilinx errors which were solved by deleting malfunctioning blocks and
replacing them with new ones and version control issues with the git. The schematic
files in Xilinx did not work well with the repo and this resulted in the wiping or
corruption of files in the project folder that required a lot of time in debugging and
recreating.

