We have completed the Hardy's Number problem and our algorithm ran all the tests successfully on a 64-bit machine. However, when we ported it to my partner's 32-bit computer, not all the tests ran under the time limit. I was wondering what machine the graders will be using so we know if we need to further improve our algorithm or not.

The graders will run your code on their own computers. Yes, there may be some small variations based on the machine used. Suppose that there is a 10 point difference in the correctness score that the grader gets and the one you get on your computer. If my quick addition in my head is correct, by 3 weeks after the start of the course, there already be 615 possible HW points. I think it is reasonable to expect that there will be at least 1500 homework points by the time the term is over. Thus a 10 point discrepancy here would amount to about 2/3 of 1% of your homework average, which is 2/10 of 1% of your overall course grade. I think that is a reasonable “margin of error” (as well as an indication that you should not spend hours and hours just to get a few more points on this assignment).

If the discrepancy is more than 10 points, come to my office and run it on your computer, and I will give you the extra points.

For the Hardy project, to get full credit for correctness assuming we didn’t do anything illegal, do we need to get 84 points in the JUnit tests or 100. On the grading criteria page it says that 100 is a perfect score, but on the other page it says that 84 points will be considered full credit. Which is the benchmark that we need to shoot for?

100 points is a perfect score for the entire problem. 84 for correctness/efficiency and 16 for style. If your code happens to pass all of the unit tests (mine doesn’t!), you can earn 60 extra points.

For the HardyPart2 project, we basically run into the problem of memory out of bounds error, since the heap space has been exhausted. We suspect it's mainly due to the add() method in HashSet. It turns out when n gets larger, the HashSet significantly become cumbersome. We tried our best to refine our code, but doesn't seem to reach a solution. However, we found online that Google has open-source code that re-implements the HashSet data structure, which makes most methods(apparently including add()) in HashSet way more memory efficient than it would have been in standard Java library.

If we import this HashSet class into our project, without changing any other things in our Hardy.java class, our code passed significant more test cases than it used to be, without having to increment additional heap memory on our machine. The following link is the reference we got:
http://code.google.com/p/google-web-toolkit/source/browse/trunk/dev/core/src/com/google/gwt/dev/util/collect/HashSet.java?r=9858

Just wondering if we are allowed to import this class into our project, since in the documentation, you did mention that we can "adapt" the known data structures in Java. Of course, we will cite the reference in our comments, and strive our best to really understand Google's code on what it's actually doing. Is it a valid approach?

Yes, you may do that. Probably best to incorporate the source code into your project, since then it should work for the graders without installing any special libraries.

What happens to our score if we violate the rule about writing the code in a way that would work for any long-integer-sized Hardy number (such as finding 1.1*n Hardy numbers and assuming that the n smallest of those numbers are actually the n smallest Hardy numbers)?

I have said before that if you choose a bound like this, you must prove to me that it will work for all Hardy numbers that can be computed without having to resort to using BigIntegers. If you use a “heuristic” bound without such a proof, I will instruct the graders to award 80% of the correctness/efficiency points that the JUnit tests say you should get.

What data structure(s) should we use for this?

[bookmark: _GoBack]It depends on your approach. The Java Collections we have read about include HashMaps and HashSets, TreeMaps and TreeSets, PriorityQueues, and various types of Lists. We've seen fairly successful solutions using all of these (and have written solutions using more than one). You'll have to (1) really understand how you are going to detect Hardy Numbers and (2) see the patterns in the way that you are searching to make effective use of any data structure. We anticipate you'll be drawing pics of how you are searching through values of a, b, etc. Once you understand the problem, a couple data structures will probably stand out more than others.

Can I look at algorithms to do this online?

I can't stop you, although if you submit one that I've seen before and you don't cite your source in your code, that is academic misconduct and penalties will apply. Besides, isn't it more satisfying to earn 90% on a solution that you wrote and understand yourselves than to earn 105% on an algorithm that you just grabbed from elsewhere?

