
 Name: ________________________________

Page 1 of 8

CSSE 220—OBJECT‐ORIENTED SOFTWARE DEVELOPMENT

FINAL EXAM, WINTER, 2007‐08 WRITTEN QUESTIONS

The "written" part of this exam is entirely on paper. You are not allowed to use any resources other than the
one sheet of paper you were told you could bring,

I recommend spending no more than 90 minutes on this part (most people should finish it much sooner).

THE PROBLEMS

1. (12 points) Consider the following initial array configuration:

11 5 3 8 7 1 10 2 4 12 6 9

(a) If the bubble sort algorithm from class is applied to this array, show the state of the array immediately
following the first two executions of the outer loop.

(b) If the insertion sort algorithm from class is applied to the initial array, show the state of the array
immediately following the first four executions of the outer loop.

(c) If the selection sort algorithm from class (selecting the largest elements first) is applied to the initial
array, show the state of the array immediately following the first two executions of the outer loop.

(d) If the merge sort algorithm from class is applied to the initial array, show the state of the array
immediately before the final call to merge().

(e) If the Shell sort algorithm is applied to the initial array, and the first gap size is 4, show the state of the
array immediately after that partial sort with the first gap size.

(f) How many inversions are in the initial array? ______

 Name: ________________________________

Page 2 of 8

2. (5 points) When we wrote insertion sort in class, we started at the beginning of the array, and the outer
loop went in forward order. We could write an insertion sort starts at the end of the array, having the
outer loop go in reverse order. Write it.
public void sort (int [] a) {

}

3. (8 points) Mark each of the following statements as True (T) or False (F) by circling the letter. For
those that are False, briefly explain why or give a counterexample.
T F If f(N) is O(g(N)), then g(N) is O(f(N)).

T F If f(N) is Θ(g(N)), then g(N) is Θ(f(N)).

T F 2N is O(3N).

T F 3N is O(2N).

T F log3N is Θ(log2N)

T F If the limit of f(N)/g(N) as N ∞ is 5, then f(N) is O(g(N))

 Name: ________________________________

Page 3 of 8

4. (10 points) The background for this problem is on this page; the actual problem is on the following
page.

Consider the following method description from the java.util.List documentation:

List<E> subList(int fromIndex, int toIndex)
Returns a view of the portion of this list between the specified fromIndex, inclusive, and toIndex,
exclusive. (If fromIndex and toIndex are equal, the returned list is empty.) The returned list is backed
by this list, so non‐structural changes in the returned list are reflected in this list, and vice‐versa. The
returned list supports all of the optional list operations supported by this list.
This method eliminates the need for explicit range operations (of the sort that commonly exist for arrays). Any
operation that expects a list can be used as a range operation by passing a subList view instead of a whole list. For
example, the following idiom removes a range of elements from a list:
 list.subList(from, to).clear();
Similar idioms may be constructed for indexOf and lastIndexOf, and all of the algorithms in the
Collections class can be applied to a subList.
The semantics of the list returned by this method become undefined if the backing list (i.e., this list) is structurally
modified in any way other than via the returned list. (Structural modifications are those that change the size of this
list, or otherwise perturb it in such a fashion that iterations in progress may yield incorrect results.)
Parameters: fromIndex ‐ low endpoint (inclusive) of the subList
 toIndex ‐ high endpoint (exclusive) of the subList
Returns: a view of the specified range within this list
Throws: IndexOutOfBoundsException ‐ for an illegal endpoint index value
 (fromIndex < 0 || toIndex > size || fromIndex > toIndex)

Here is an example of the use (and misuse) of the subList method:
 public static void main(String[] args) {
 ArrayList<Integer> list = new ArrayList<Integer>();
 for (int i=0; i< 12; i++) {
 list.add(2*i+1);
 }

 List<Integer> subList = list.subList(3, 7);
 System.out.println(subList);
 list.set(4, 100);
 System.out.println(subList);
 list.add(4, -6);
 System.out.println(subList);

 }

Output:
[7, 9, 11, 13]
[7, 100, 11, 13]
Exception in thread "main" java.util.ConcurrentModificationException
 at java.util.SubList.checkForComodification(Unknown Source)
 at java.util.SubList.listIterator(Unknown Source)
 at java.util.AbstractList.listIterator(Unknown Source)
 at java.util.SubList.iterator(Unknown Source)
 at java.util.AbstractCollection.toString(Unknown Source)
 at java.lang.String.valueOf(Unknown Source)
 at java.io.PrintStream.println(Unknown Source)

 at SublistExperiment.main(SublistExperiment.java:19)

 Name: ________________________________

Page 4 of 8

4. (continued)
(a) (5 points) Describe in a few sentences and/or code how you would modify our representation of
ArrayList in order to support and implement this subList method and the rest of the described behavior.

(b) (5 points) Describe in a few sentences and/or code how you would modify our representation of
LinkedList in order to support and implement this subList method and the rest of the described behavior.

 Name: ________________________________

Page 5 of 8

5. (10 points) In a homework problem, we considered how to efficiently store and access the elements of
an NxN lower triangular matrix. Suppose we want to represent N x N upper-triangular matrices instead.
Since we know that M[i][j] is always zero if j<i, we only need to store the elements for which j≥i. We
can store those elements in a one-dimensional array, elements. Something like this:
public class UpperTriangular {

 private int[] elements;
 private int dimension;

 public UpperTriangular(int n) {
 elements = new int[???];
 dimension = n;
 }

(a) (3 points) What expression should go inside the brackets (where the question-marks are)?

On Exam 2, we saw that the formula for looking up matrix elements in the array is simplest if we store the
nonzero elements column-by-column. Suppose that some other constraint forces us to store them row-by-
row.
(b) (2 points) In this representation of a 5x5 upper-triangular matrix,
 at what index in the elements array would M[2][4] be stored? _______

It is still possible to write a constant-time formula for finding M[i][j].
 public int get(int row, int col){
 if (col < row)
 return 0;
 return elements[???];

 }

 (c) (5 points) What expression should go inside the brackets (where the question-marks are)?

6. (3 points) On what basis would you decide between using a HashMap and using a TreeMap to store a
table of keys and their associated values?

 Name: ________________________________

Page 6 of 8

7. (6 points) The following is an excerpt from the BankServer.java code that we discussed in class.

 ServerSocket server = new ServerSocket(8888);

 while (true) {
 Socket s = server.accept();
 BankService service = new BankService(s, bank);
 Thread t = new Thread(service);
 t.start();
 }

(a) What does the number 8888 specify here?

(b) What is a ServerSocket used for?

(c) What does a call to the accept method do?

(d) From what you see in this code, what interface must the BankService class implement?

(e) What will a service object have to do with the socket that is passed to its constructor before it can

begin communicating with a client.

(f) Why does this program create and start threads inside an infinite loop?

 Name: ________________________________

Page 7 of 8

8. (a) (5 points) Write a Comparator (i.e. java.util.Comparator, which we discussed frequently) called
CompareStringsIgnoreSpaces that compares two strings of characters, while ignoring any spaces
in the strings. For example, in this ordering, “abc” and “ab c” are equal, while “ab c” comes after “abb”
(the former would come before the latter in the normal String ordering).

(b) (3 points) java.util.Arrays.sort() takes an array of objects and a Comparator that can
compare those objects. Show how you would call it using an array of Strings, named strings,
and a CompareStringsIgnoreSpaces Comparator, in order to sort the array in the order implied
by the description in part (a).

9. (2 points) What is Polymorphism? Given an example of something we did where Polymorphism made
the code more general or easier to write.

 Name: ________________________________

Page 8 of 8

10. (6 points) Write a simple method that prints all of the elements from an arbitrary collection in reverse
order, by taking advantage of the properties of one of the data structures that we studied.
public static void printReverse (Collection c) {

}

