
Inheritance and Polymorphism
CSSE 221

Fundamentals of Software Development Honors

Rose-Hulman Institute of Technology

Announcements
•  Capsules:
– Summary, quiz, and key each in a separate

document

– Quiz has place for students' names, questions are
numbered

– Quiz: max of 1 side

– Key is marked as such

•  Look for email about my BigRational unit
tests

•  Questions?

This week: BallWorlds assignment
•  Last class:
–  Intro to UML as a communication tool
–  Writing methods you don't call
–  Using this

•  Today:
–  Inheritance
–  Polymorphism

•  Friday:
–  Introducing next week’s assignment
–  Arrays and ArrayLists
–  (Using the debugger)

Inheritance

•  Some slides inspired by Fall 2006-2007
CSSE221 students:

– Michael Auchter

– Michael Boland

– Andrew Hettlinger

Inheritance

•  Objects are
unique

•  But they often
share similar
behavior!

Student

Professor

Software Engineer

Chemical Engineer

Physicist

Guitarist

Drummer

Why not just copy-and-paste?

•  Say I have an Employee class and want to
create an HourlyEmployee class that adds
info about wages. Why not copy-and-
paste, then modify?

The Basics of Inheritance

•  Inheritance allows you to reuse methods
that you’ve already written to create more
specialized versions of a class.

•  Syntax:
public class HourlyEmployee extends Employee

Subclass Superclass

HourlyEmployee IS-A Employee

1-1, 2-1

Your turn

•  Question: What is the relationship between
a parrot and a bird?

Your turn

•  What is the relationship between a parrot
and a bird?
– Every parrot is a bird, but not every bird is a

parrot.

– So if you had a Java class for each, which
class would extend which?

Some Key Ideas in Inheritance

•  Code reuse

•  Overriding methods

•  Protected visibility

•  The “super” keyword

Code re-use

•  The subclass inherits all the public and
protected methods and !elds of the
superclass.

– Constructors are not inherited

– Constructors can be invoked by the subclass

•  Subclass can add new methods and !elds.

Overriding Methods

•  DudThatMoves extends Dud

•  DudThatMoves will de!ne an act() method
with the same signature that overrides
Dud’s method

It’s exactly the
same as in the
superclass!

What do you think happens if our
child class doesn’t override a
method in the superclass?

Visibility Modifiers
•  Public – Accessible by any other class in any package.

•  Private – Accessible only within the class; for !elds.

•  Protected – Accessible only by classes within the same
package and any subclasses in other packages.
–  We won't use protected !elds, but use private with protected

accessors.
–  Private !elds are encapsulated

•  Default (No Modi!er) – Accessible by classes in the same
package but not by classes in other packages.
–  Use sparingly!

1-2

The “super” Keyword

•  It’s like the word “this,” only “super”:

•  Two uses:
– To call a superclass' method, use

super.methodName(…)

– To call a superclass' constructor, use
super(some parameter)
from the child class’ constructor

•  Don't use super for !elds (they're private
anyway).

1-3, 2-6

The “super” Keyword

•  Methods can call super.methodName(…)

– To do the work of the parent class method,
plus…

– Additional work for the child class
public class Workaholic extends Worker {
 public void doWork() {
 super.doWork();

 drinkCoffee();
 super.doWork();
 }

}

The “super” Keyword

•  Methods can call super.methodName(…)

– To do the work of the parent class method,
plus…

– Additional work for the child class
public class Workaholic extends Worker {
 // If a Workaholic just worked
 // like a worker, it would inherit doWork
 // NEVER write code like this:
 public void doWork() {
 super.doWork();
 }

}

The “super” Keyword

•  A common experience?

public class RoseStudent extends Worker {
 public void doWork() {
 while (!isCollapsed) {
 super.doWork();

 drinkCoffee();
 }

 super.doWork();
 }
}

Rules of using super in constructors

•  A super(…) call must be the first line of
the code of a class’s constructor if it is to
be used.

The this Keyword

1.  this.someField and this.someMethod():
nice style

2.  this alone is used to represent the whole
object: environment.addBall(this)

The this Keyword

3. this calls another constructor

this must be the !rst thing

called in a constructor.

Therefore, super(…) and

this(…) cannot be used in

the same constructor.

public class Foo {

 private String message;

 public Foo(){

 this(“This is sad.”);

 }

 public Foo(String s){

 this.message = s;

 }

}

Overriding vs. Overloading

•  Recall: overriding a method is when a subclass
has method with the same signature (name
and parameter list) as its superclass
– Mover’s act() and Bouncer’s act()

•  Overloading a method is when two methods
have the same name, but different parameter
lists
Arrays.sort(array) and Arrays.sort(array, new ReverseSort())

2-2,2-3

More notes

•  Every object in Java extends java.lang.Object
– Don’t have to say it explicitly

– This is why every class has a basic toString() and a
basic clone() method.

•  Abstract classes contain abstract
(unimplemented) methods.
– Abstract classes can't be instantiated, just

extended

1-4, 2-5

Final notes

•  What does it mean to be declared final?
– Final fields can’t be assigned a new value

– Final methods cannot be overridden

– Final classes cannot be extended

•  There is only single inheritance in Java

1-4

Next

•  Finish the inheritance quiz

•  Do the Inheritance Demo linked from the
Schedule page

•  Take a break

Polymorphism
•  Polymorphism allows a reference to a superclass or

interface to be used instead of a reference to its
subclass

// Rectangle and Circle could implement or extend Shape

Shape rect = new Rectangle();

Shape circle = new Circle();

void printArea(Shape shape) {

 System.out.println(shape.getArea());

}

1-1, 1-3, 2-1, 2-2

Polymorphism

double totalArea(ArrayList<Shape> shapes) {

 double totalArea = 0;

 for (Shape s : shapes) {

 totalArea += s.getArea();

 }

 return totalArea;

}

1-4, 2-4

Example
•  In the bird and parrot example, consider a bird

method:
static void printCall(Bird bird) {

System.out.println(bird.call);
}

•  Generic: printBirdCall expects a Bird, but any type of
bird is OK.

•  Cannot write Parrot p = new Bird(); -there’s not
enough info!

•  However, without casting, b can only use bird
methods; parrot-speci!c information can't be
accessed!

Bird b = new Parrot();
printBirdCall(b);
Parrot p = new Parrot();
printBirdCall(p);

Casting and instanceof
•  If we know that b is a Parrot, we can cast it and use

Parrot methods:
((Parrot)b).speak()

•  At runtime, if b is just a Bird, the JVM will throw a
ClassCastException.

•  To test this, use instanceof:
if (b instanceof Parrot) { ((Parrot)b).speak()) }

Late Binding: The Power of Polymorphism
HourlyEmployee h = new HourlyEmployee("Wilma Worker", new

Date("October", 16, 2005), 12.50, 170);

SalariedEmployee s = new SalariedEmployee("Mark Manager",

new Date("June", 4, 2006), 40000);

Employee e = null;
if (getWeekDay().equals(“Saturday”)
 e = h;

else
 e = s;

System.out.println(e);

Is e's actual type (and
thus which toString() to
use) known at compile-

time or run-time?

Wrap-up

•  Finish the quiz and turn it in

•  Finish the demo: this part is much shorter

