CSSE 220 ConnectN Programming Assignment

My Objectives for this Assignment:

 You will review applets, events, objects, and java GUI tools.

 You will design an Object-oriented data structure to hold the data associated with the game.

 You will be creative in designing and implementing the user interface.

 You will complete it in a week.

 You will have fun.

This is an individual assignment. You may discuss the design and implementation of this program with other students, and you may get help with debugging, but the code is to be yours, not gotten by copying (electronically or otherwise) from someone else.
Submission: In your turnin folder on AFS (/class/csse/csse220/csse230-200810/turnin/username), you will find a subfolder called ConnectN. Place your ConnectN.html file in this older (if you use FTP to transfer the file, please transfer it in ASCII mode), along with any Java source files and other files that your applet needs. You do not need to include any .class files; I will compile your code by first CD-ing to that directory and then typing javac *.java to compile all .java files in that directory. After submitting, you should try the same thing (using SecureCRT or some other ssh program), to make sure that you have submitted it correctly. Then you should use AFS Drive Mapper or Network Identity Manager go to your ConnectN on AFS, and double-click ConnectN.html to make sure that your program actually runs there.
Documentation: I expect your code to be documented in such a way that a person who knows Java and understands the specifications of ConnectN can readily read and understand your approach and the details of how you do it.
Grading Sheet: A copy of the grading sheet that will be used during the evaluation of your program is on-line in the same directory as this specification. You can look at it and see what the graders will consider important. Note that the resizability does not account for a lot of the points, so if you run out of time, this is the part to skip.
Specification: ConnectN is based on Milton Bradley's Connect 4 two-player game. In Connect 4, there is a 6 x 7 grid of slots that can hold checkers. Players take turns adding checkers. The first person to get four checkers of her color in a row (vertically, horizontally, or diagonally) wins. The catch is that you cannot place a checker in any spot that you wish. Each vertical column is a slot into which you can drop a checker from the top, so that it ends up in the lowest vacant slot in that column. For a picture of this, see http://www.rose-hulman.edu/class/cs/csse220/csse220-200810/web/exercises/ConnectN/Connect4_Picture.jpg.

In ConnectN, a single player plays against the (not so smart) computer. The player may of course choose to place a checker in any column that is not already full. The computer obeys the following rules.

1. If the computer has a winning move, it makes a winning move.

2. If the human player has a winning move for her next turn, the computer blocks it by playing in that space.
(but of course, only one such space may be blocked; if there are two, the computer is out of luck)

3. Otherwise, the computer chooses a random non-full column and plays there.

4. You are allowed, but not required to put more intelligence into your computer player.

Why the name ConnectN instead of Connect 4? Because this virtual game can do something that the real game cannot do: resize itself. There should be two buttons, one to increase the size and one to decrease it (There should also be a button for clearing the board and starting a new game). I'll use N to refer to the "size of the game". For Connect 4, N=4. In ConnectN, in order to win, a player must get N checkers in a row; the board has N+2 rows and N+3 columns.

Your program should be written so that in theory, it will work for any value of N>2. In reality, screen size may be a factor for large N. Do not write the program for a limited upper range of N, but it is okay if the GUI gets messed up if N gets to be too large (say, larger than 8).

One possible simple approach to the GUI (You are not required to use it) : Represent the board by a subclass of JPanel that draws a Yellow rectangular background, then draws filled circles on top of it (white for empty, red or black for a position filled by a checker). There is a button above each column that says "Drop a Checker here" or something like that. When pressed, a checker of the player's color is added to that column. Or you can have the user click the mouse somewhere in the column in which the checker is to be dropped.
CSSE 230 ConnectN Programming Assignment
09/10/07
Page 1 of 1

