
CSSE 220

Objects

Import SuperSimpleObjects from repo

Import TeamGradebook from repo

Plan for today

• Talk about object references and box and pointer
diagrams

• Talk about static methods

• Continue working on writing your own classes

• Talk about variable scope

• Get started on TeamGradebook, your new
assignment

TeamGradebook

• Just a quick demo

Finishing up from last time...

• Complete the StudentAssignments problem in
the SuperSimpleObject project (or the one
from last class)

OBJECT REFERENCES
Differences between primitive types and object types in Java

What Do Variables Really
Store?
• Variables of primitive type store values

• Variables of class type store references

1. int x = 10;

2. int y = 20;

3. Rectangle box = new Rectangle(x, y, 5, 5);

10x

20y

5

10

20

5

box

Assignment Copies Values
• Actual value for number types

• Reference value for object types
• The actual object is not copied

• The reference value (“the pointer”) is copied

• Consider:

1. int x = 10;

2. int y = x;

3. y = 20;

4. Rectangle box = new Rectangle(5, 6, 7, 8);

5. Rectangle box2 = box;

6. box2.translate(4, 4);

10x

10y 8

5

6

7
box

× 20
box2

× 9

× 10

Reference vs Value Equality

String t1 = "hello";

String t2 = "hello";

System.out.println(t1 == t2);

System.out.println(t1.equals(t2));

What gets printed? What gets printed here?

l1

10

21

May print true or false

Prints true

l2

10

21

ArrayList<Integer> l1 = new ArrayList<Integer>();

l1.add(1);

l1.add(2);

ArrayList<Integer> l2 = new ArrayList<Integer>();

l2.add(1);

l2.add(2);

System.out.println(l1 == l2);

System.out.println(l1.equals(l2));

Prints true

Prints false

== operator compares references of two objects

equals(), in general, compares values of two objects

Q11

Box and pointer exercise

Q1 – Q10

STATIC
Understanding static

public class Student {
private String name;
private char grade;

public Student(
String name,
char grade){

this.name = name;
this.grade = grade;

}

@Override
public String toString(){
return name +
" has a grade of "
+ grade;

}
}

Why fields can’t always be static

OUTPUT – from Client program:
Adam has a grade of A
Bryan has a grade of B
Chris has a grade of C

public static void main(String[] args) {
Student a = new Student("Adam", 'A');
Student b = new Student("Bryan", 'B');
Student c = new Student("Chris", 'C');
System.out.println(a);
System.out.println(b);
System.out.println(c);

}

Client program – of Student Class

public class Student {
private String name;
private static char grade;

public Student(
String name,
char grade){

this.name = name;
Student.grade = grade;

}

@Override
public String toString(){
return name +
" has a grade of "
+ grade;

}
}

Why fields can’t always be static

OUTPUT – from Client program:
Adam has a grade of C
Bryan has a grade of C
Chris has a grade of C

public static void main(String[] args) {
Student a = new Student("Adam", 'A');
Student b = new Student("Bryan", 'B');
Student c = new Student("Chris", 'C');
System.out.println(a);
System.out.println(b);
System.out.println(c);

}

Client program – of Student Class

Static means there's only one instance of a field/method for

all instances of a class that's created. So when you change

a grade, it changes for all instances.

When do we make methods static?

• Utility Methods
• Things like abs, sqrt, etc.

• Don’t need an instance of a class to run them

• How do I know?
• No references to non-static fields/methods

• No “this” keyword used in method

When do we make fields static?

• Never
– Seriously, this is disallowed for all the code you

submit in CSSE220 (exception: CONSTANTS)
– It makes your designs worse

• If it wasn’t disallowed, when would you use it?
– Very rarely for memory efficiency, state that can’t

be duplicated, or really meta code
– BUT even professional programmers misuse static

and cause themselves major problems
– They’ll talk about some positive uses in CSSE374

public class Car {

private double mileage;

//other stuff

public double getMilesTravelled() {
return this.mileage;

}

public static double convertMilesToKm(double numberOfMiles) {
return numberOfMiles * 1.609344f;

}

}

//Elsewhere in a client program of Car class

//requires you to have a car object
Car myCar = new Car();
// getMilesTravelled requires you to have a car object
System.out.println(myCar.getMilesTravelled());//output depends on code
//convertMilesToKm can be called on the class Car itself

System.out.println(Car.convertMilesToKm(77));//output is 123.919488

public class Bicycle {

private int speed;
private static int numCreated = 0;

public Bicycle(int speed) {
this.speed = speed;
Bicycle.numCreated++;

}
public int getSpeed() {

return this.speed;
}
public static int getNumCreated() {

return Bicycle.numCreated;
}

}

// Client does not need Bicycle object for calling getNumCreated
System.out.println(Bicycle.getNumCreated());
Bicycle myBike1 = new Bicycle(18);
Bicycle myBike2 = new Bicycle(1);
System.out.println(Bicycle.getNumCreated() + " " + myBike1.getSpeed());

0

2 18 Q12 - Q16

Two ways to do one thing:
Static and Instance
• Consider the Point class we used as a Quiz

• Let’s write code to enable the follow to run

Point a = new Point(0,0);

Point b = new Point(3, 4);

System.out.println(Point.distanceBetween(a,b));

System.out.println(a.distanceTo(b));

Live code

Why this?

• Fills same role as “self” in python

• Keep track of what variables belong to the
instance of the class

• (Object inside which code is running)

• Helps differentiate instance and local variables

• Variable Scope (next)

Scope is the region of a program in
which a variable can be accessed

• Parameter scope: the whole method body

• Local variable scope: from declaration to block end

public double myMethod() {
double sum = 0.0;
Point2D prev = this.pts.get(this.pts.size() - 1);
for (Point2D p : this.pts) {
sum += prev.getX() * p.getY();
sum -= prev.getY() * p.getX();
prev = p;

}
return Math.abs(sum / 2.0);

}

Variable Scope

• Member scope: anywhere in the
class, including before its
declaration

• Lets methods call other methods
later in the class

• public static class members
can be accessed from outside
with “class qualified names”

• Math.sqrt()

• System.in

Member Scope (Field or Method)

Class MyClass {

. . .

// member variable declarations

. . .

public void aMethod(params…) {

. . .

// local variable declarations

. . .

for(int i = 0; i < 10; i++)

{. . . }

. . .

}

. . .

}

Member

Variable Scope

Method

Parameter

Scope

Local Variable

Scope

Block scope

Overlapping Scope and Shadowing

public class TempReading {
private double temp;

public void setTemp(double temp) {
… temp …

}
// …

}

this.temp = temp;

What does this

“temp” refer to?

Always qualify field references with

this. It prevents accidental

shadowing.

Exercise

• Start working on the TeamGradeBook
homework. Try to finish the code for both
add-student, add-absence and get-absences
today

• If you are confused about what to do, get
help!

