
CSSE 220
Arrays, ArrayLists,

Wrapper Classes, Auto-boxing,

Enhanced for loop

Import ArraysListPractice from Git clone 1

Please sit in the first four rows!
(not the back row if possible)

Speed With Which Things Move

• Moving up a level in speed

• Anticipate:

– Go through slides before class

– Familiarize yourself with terminology

– Read/Skim the Big Java chapters

– Write down questions for instructor

– Ask questions in class, or hand piece of
paper with questions to instructor at
beginning of class

2

Getting things done

• If something has a hard deadline, then set a
reminder in your smart device

• Live by: “if I don’t do it now, it won’t get done”

3

HW1 + TwelveProblems
• You will import these assignments from your

git repo

• You will write the code to complete these
assignments in Eclipse

• When you are done, pull, commit, and push
your solutions to your repo

• Very your changes are pushed to your repo on
ada.csse.rose-hulman.edu

5

Review Loops: while & for Loops

While loop syntax: Similar to Python

while (condition) {

statements

}

For loop syntax: Different from Python

for (init; condition ; update) {

statements

} In both cases, curly braces optional if only
one statement in body; but BE CAREFULl!

Comparing for vs. while

int k =0;  extra line

while (k < 10) {

System.out.println(k);

k++;  extra line

} // end while

for (int k = 0 ; k < 10; k++) {

System.out.println(k);

} // end for
7

Important Reminder: Comparisons

• Fast rules for now:

• Use .equals() for comparing Strings

String alpha = “aaa”;

if (alpha.equals(“bbb”) {

System.out.println(“Yes!”);

} // end if

• Use == comparing numbers or char (primitives)

boolean a = (5 == 6);

boolean b = (‘T’ == ‘F’); 8

JavaIntro, HW1, TwelveProblems

• Any questions: feel free to ask individually

• JavaIntro will not be collected and graded

– Intended to help you learn

– Not intended as busy work

• TwelveProblems

– Due Friday night

– First half you can probably do already

9

Syllabus Highlights

• Course policies:
https://www.rose-
hulman.edu/class/csse/csse220/201930/Docs/s
yllabus.html

• Late Assignments

– Grading

– Collegiality

10

https://www.rose-hulman.edu/class/csse/csse220/201930/Docs/syllabus.html

Syllabus Highlights

• Schedule:
https://www.rose-
hulman.edu/class/csse/csse220/201930/Sched
ule/Schedule.htm

11

https://www.rose-hulman.edu/class/csse/csse220/201930/Schedule/Schedule.htm

Review of types

• Primitives
– int, double, char, boolean, long, …

• Objects
– String, …

• Gotchas:
What is 7/2?

Alternatives?
What is x/y if x and y are both ints?

Alternatives?
What is s after these 2 lines?

String s = “computer”;

s.substring(0,3);

Alternatives?
12

Arrays- What, When, Why, & How?

• What

– A special type used to hold a fixed number
of items of a specified type

• When

– Use when you need to store multiple items
of the same type

– Number of items is known and will not
change

13

Arrays- What, When, Why, & How?
• Why

– Avoids things like int1, int2, int3, int4

– Avoids repetitive code and frequent updates

• How

– Type[] arr = new Type[num];

Creates a new array of type Type stored in
variable arr

– An array of 5 Strings (stored in the variable
fiveStrings) would look like this:
String[] fiveStrings = new String[5];

14

Array Examples Handout
1. Form groups of 2

2. Look at the Array Examples Handout
Steps 1 – 3 of handout – Built-in Java Arrays

3. Study how arrays are used and answer the questions in the quiz:

FIRST PAGE OF QUIZ ONLY

1. Step 3 of handout: http://codingbat.com/java/Array-2

– Work in your groups to solve:
fizArray3, bigDiff, shiftLeft

– If you finish early, try: zeroFront

– Save your codingbat work by doing copy and paste

2. At bell: we move on to ArrayLists
Steps 4 – 7 of handout

15

http://codingbat.com/java/Array-2

Array Types

 Group a collection of objects under a single name

 Elements are referred to by their position, or index,
in the collection (0, 1, 2, …)

 Syntax for declaring: ElementType[] name

 Declaration examples:

◦ A local variable: double[] averages;

◦ Parameters: public int max(int[] values) {…}

◦ A field: private Investment[] mutualFunds;

16

Allocating Arrays

 Syntax for allocating:
new ElementType[length]

 Creates space to hold values
 Java automatically sets values to defaults

◦ 0 for number types
◦ false for boolean type
◦ null for object types

 Examples:
◦ double[] polls = new double[50];

◦ int[] elecVotes = new int[50];

◦ Dog[] dogs = new Dog[50];

Don’t forget this
step!

This does NOT construct
any Dogs. It just

allocates space for
referring to Dogs (all the
Dogs start out as null)

17

Reading and Writing
Array Elements

 Reading:
◦ double exp = polls[42] * elecVotes[42];

 Writing:
◦ elecVotes[37] = 11;

 Index numbers run from 0 to array length – 1
 Getting array length: elecVotes.length

Accesses the element
with index 42.

Sets the value in
slot 37.

No parentheses, array length
is (like) a field 18

Arrays: Comparison Shopping

Arrays… Java Python lists

have fixed length yes no

are initialized to default
values

yes n/a

track their own length yes yes

trying to access “out of
bounds” stops program before
worse things happen

yes yes

19

ArrayList- What, When, Why, & How?

• What

– A class in a Java library used to hold a
collection of items of a specified type

– Allows variable number of items

– Fast random access

• When

– Use when you need to store multiple items
of the same type

– Number of items is not known/will change
20

ArrayList- What, When, Why, & How?
• Why

– Fast random access

– Allows length changes, cannot do this with an
array

• How
ArrayList<Type> arl = new ArrayList<Type>();

– Creates a new ArrayList of type Type stored in
variable arl

21

ArrayList Examples Handout

• Look at the ArrayList section of the examples
handout

• Study how arrayLists are used and answer the
questions in (page 2 of) the quiz

• Then solve the 3 problems in ArrayListPractice
(you pulled it from Git and imported it)

22

What if we don’t know how many elements
there will be?

 ArrayLists to the rescue

 Example:

◦ ArrayList<State> states = new ArrayList<State>();

◦

states.add(new State(“Indiana”, 11, .484, .497));

 ArrayList is a generic class
◦ Type in <brackets> is called a type parameter

Element type

Variable type

Adds new element to end
of list

Constructs new, empty
list

Optional in Java 7 and
onwards

e.g., new ArrayList<>()

23

ArrayList Gotchas

• Type parameter cannot be a primitive type
– Not: ArrayList<int> runs;
– But: ArrayList<Integer> runs;

• Use get method to access elements
– Not: runs[12]
– But: runs.get(12)

• Use size() not length
– Not: runs.length
– But: runs.size()

24

Lots of Ways to Add to List
Example List:
ArrayList<WorldSeries> victories =

new ArrayList<WorldSeries>();

 Add to end:
◦ victories.add(new WorldSeries(2011));

 Overwrite existing element:
◦ victories.set(0,new WorldSeries(1907));

 Insert in the middle:
◦ victories.add(1, new WorldSeries(1908));
◦ Pushes elements at indexes 1 and higher up one

 Can also remove:
◦ victories.remove(victories.size() - 1)
this removes at the end

25

So, what’s the deal with
primitive types?

 Problem:
◦ ArrayList’s only hold objects

◦ Primitive types aren’t objects

 Solution:
◦ Wrapper classes—instances are

used to “turn” primitive types
into objects

◦ Primitive value is stored in a field
inside the object

Primitive Wrapper

byte Byte

boolean Boolean

char Character

double Double

float Float

int Integer

long Long

short Short

26

Auto-boxing Makes Wrappers Easy

 Auto-boxing: automatically enclosing a primitive type in
a wrapper object when needed

 Example:

◦ You write: Integer m = 6;

◦ Java does: Integer m = new Integer(6);

◦ You write: Integer answer = m * 7;

◦ Java does: int temp = m.intValue() * 7;
Integer answer = new Integer(temp);

27

Auto-boxing Lets Us Use ArrayLists with
Primitive Types

 Remember to use wrapper class for array list
element type

 Example:
◦ ArrayList<Integer> runs =

new ArrayList<Integer>();
runs.add(9); // 9 is auto-boxed

◦ int r = runs.get(0); // result is
unboxed

28

Enhanced For Loop and Arrays

 Old school
double[] scores = …
double sum = 0.0;
for (int k = 0; k < scores.length; k++) {

sum += scores[k];
}

 New, whiz-bang, enhanced for loop
double[] scores = …
double sum = 0.0;
for (double score : scores) {

sum += score;
}

 No index variable
(easy, but limited
in 2 respects)

 Gives a name
(score here) to
each elementSay “in”

29

Enhanced For and ArrayList’s

 ArrayList<State> states = …

int total = 0;

for (State state : states) {

total += state.getElectoralVotes();

}

30

Work Time

• Finish all the in-class material exercises if you
haven’t yet

• Work on TwelveProblems

31

