
Name: Section: CM:

CSSE 220—Object-Oriented Software Development

Exam 2, April 25th, 2018
This exam consists of two parts. Part 1 is to be solved on these pages. Part 2 is to be solved using
your computer, and will be taken on Friday. You will need network access to download template
code and upload your solution for part 2.

Resources for Part 1: You may use a single sheet of 8 1
2 ×11 inch paper with notes on both sides.

You can also use your "UML Cheatsheet" and your "Design Principles" handouts if you brought
them. Your computer must be closed the entire time you are completing Part 1.

Problem Poss. Pts. Earned
1 5
2 8
3 8
4 4
5 10
6 15

Paper Part Subtotal 50

C1. Recursion problems 18
C2. Polymorphism problem 12

C3. GUI problem 20
Computer Part Subtotal 50

Total 100

1

Part 1—Paper Part
1. (5 points total. 1 point each question.)
On this page there is a UML diagram and
the code it represents. Please look at the
code and diagram and then answer the
questions below.

a. What line number(s) does the arrow
starting at D and going to A correspond to?

b. What line number(s) does the arrow
starting at D and going to B correspond to?

c. What line number(s) does the arrow
starting at D and going to C correspond to?

d. What line number(s) does the arrow
starting at A and going to B correspond to?

e. What line number(s) does the arrow
starting at A and going to C correspond to?

1class A extends B {
2private ArrayList<C> foo;
3private String name;
4}
5
6class B {
7private double val;
8
9public double getVal() {
10return this.val;
11}
12}
13
14interface C {
15public double calculate();
16}
17
18class D implements C{
19private A bar;
20public double calculate(B b){
21return b.getVal()*10;
22}
23
24public double calculate(){
25return 100;
26}
27}

2

3

2. (8 points) A particular software system is designed to fill vans to go on a road trip. Three
different kinds of things can be stored in a van - luggage, coolers, and people - each has different
data that guides how they can be assigned. Luggage can take up 0-2 seats, depending on its size.
Coolers take up 1 seat and have a list of snacks that the cooler contains. People take up 1 seat
and have a favorite snack - they must be placed in a van that has a cooler with that snack. The
code in RoadTrip::handleMakeIdealVanAssignment() allocates all luggage, coolers, and people
to vans (prior to that, nothing is assigned to vans). Once everything has been allocated, no new
things can be added but a report can be printed for each van which displays a description of
each of their contents.

Here are 2 possible solutions:

Solution A

Solution B

4

a. (2 points) Which of these two designs has a problem with cohesion? Explain both whether
the issue is high or low cohesion and how you can tell from the diagram that the problem
exists (One or two sentences is all that’s needed).

b. (2 points) Which of these two designs has a problem with coupling? Explain both whether
the issue is high or low coupling and how you can tell from the diagram that the problem
exists (One or two sentences is all that’s needed).

c. (4 points) For the design which has a problem with coupling, you can use an interface
to reduce the coupling in the system. Make a UML diagram of how this might be done.
For convenience, you can omit all fields and methods from the classes in your diagram
EXCEPT the ones in the interface you add. Do make sure to draw all lines/arrows in your
diagram.

5

3. (8 points) In a particular online store, customers can add both items and coupons to their
order. Items are added by selecting a particular item ID. In this store, items are unique (i.e. an
item cannot be added to more than one order, and each itemID is unique).

Coupons are added by entering a coupon code. A coupon looks like this “COUPON code: foobar
Entitles you to $1 off PER ITEM of item75, item76, item77 if you order AT LEAST 2”. The same
coupon can be applied to multiple orders.

To calculate the total cost, the cost of each item must be added plus the tax (which can vary
both by item and by state). Coupons must also be applied. Each coupon only applies to certain
related items. Coupons require that a minimum number of related items be in the order before
the coupon provides a discount. When a coupon does apply, it always provides a fixed amount
off each related item and it does not affect tax.

Here are 2 possible solutions. You can assume both of these designs function correctly (that
is, exclude principle 1 from your consideration).

Solution A

Solution B

6

a. (2 points) Explain the problems with Solution A using your design principles.

b. (2 points) explain the problems with Solution B using your design principles.

c. (4 points) Make a UML diagram of your proposed solution to the problem. For your solu-
tion, we have provided a StoreMain to get you started. Feel free to omit any regular getter
methods in your solution diagram as well.

7

4. (4 points) Consider the following code.

public static void process(String word) throws IllegalArgumentException{
if (word.length() == 0) {
throw new IllegalArgumentException();
}
try {

System.out.println(�rstHalf(word));
System.out.println(middleChar(word));

} catch (IllegalArgumentException e) {
System.out.println("bad arg");

} catch (ArithmeticException e) {
System.out.println("bad math");

}
}
public static String �rstHalf(String x) throws ArithmeticException {

if (x.length() % 2 != 0) {
throw new ArithmeticException();

}
return x.substring(0, x.length()/2);

}
public static char middleChar(String y) throws ArithmeticException {

if (y.length() % 2 != 1) {
throw new ArithmeticException();

}
return y.charAt(y.length()/2);

}
public static void main(String[] args) {

try {
System.out.println(middleChar("abc")) ;
process("abc") ;
process("abcd") ;
process("") ;
System.out.println("Finished!");

} catch (IllegalArgumentException e) {
System.out.println("Invalid word");

}
}

What would this code print? List the output below. (You may add additional lines if needed)

8

5. (10 points) For this problem, use the frame technique we practiced in the course to trace the
execution of the recursive function call. Start your trace with the first call to mystery on line 17.
A frame template is provided for your reference.

Once you are finished, answer the question at the bottom of the page.

1 public static String mystery(String a, String b) {
2 if (a.length() == 0) {
3 return b;
4 }
5 char fA = a.charAt(0);
6 char fB = b.charAt(0);
7
8 if (fA == fB) {
9 return fA + mystery(a.substring(1), b.substring(1));

10 } else {
11 return mystery(a.substring(1), b.substring(1));
12 }
13 }
14
15 public static void main(String[] args) {
16 System.out.println(mystery("abc", "cbaz"));
17 }

functionName
 parameters
 local variables

 return value
val

functionName
 parameters
 local variables

 return value val

(Value from
recursive call)

return value
(Value from

recursive call)

For the code above, what would the final output be?

9

6. (15 points) Consider the following related declarations. @Override annotations are omitted
to save space:

interface Wave {
public void process();

}
class Alpha implements Wave {

public void process() {
System.out.print("A");

}
public void dualProcess(Wave w) {

w.process();
w.process();

}
}
class Beta extends Alpha {

public void process() {
System.out.print("B");

}
}

class Gamma extends Beta{
private String woo;

public Gamma(String woo) {
this.woo =woo;

}

public void dualProcess(Wave w) {
System.out.print(woo);
super.dualProcess(w);
System.out.print(woo);

}
}

a. (4 points) Draw a UML diagram to represent the given interface and classes. Include all
methods, but when writing subclass methods, only show a method on the subclass if the
subclass method overrides the parent class’s method, or if the method is specific only to
the subclass. In places where lines representing fields are appropriate, use lines and do
NOT re–list the same field in the field list.

10

b. (11 points) Continuing the same problem, suppose we declare and initialize these vari-
ables:

Gamma gw = new Gamma("W");
Beta bx = new Gamma("X");
Alpha ay = new Gamma("Y");
Wave wz = new Gamma("Z");
Wave wa = new Alpha();
Beta bb = new Beta();

For each line of code below, if the line results in an error, circle the appropriate error;
otherwise, provide the output in the provided blank. If the code works but does not print
anything, write “nothing”. Consider each line of code separately. That is, if a line would
give an error, then assume that line doesn’t affect any others. If the result would print on
multiple lines, remove the newline from your result and show it on a single line.

Code Either circle the error or provide the output

wa.process(); runtime error compile error

Beta b = new Alpha(); runtime error compile error

gw.process(); runtime error compile error

wa.dualProcess(new Alpha ()); runtime error compile error

((Alpha) bx).process(); runtime error compile error

((Gamma)bb).process(); runtime error compile error

gw.dualProcess(new Wave()); runtime error compile error

gw.dualProcess(new Alpha()); runtime error compile error

((Beta)wa).dualProcess(new Alpha()); runtime error compile error

bb.dualProcess(bb); runtime error compile error

ay.dualProcess(ay); runtime error compile error

11

