
Name: Section: CM:

CSSE 220—Object-Oriented Software Development

Final Exam – Part 1, February 19, 2018
This exam consists of two parts. Part 1 is to be solved on these pages. You may use the back of
a page if you need more room. Please indicate on the front if you do so. Part 2 is to be solved
on your computer. You will need network access to download template code and upload your
solution for part 2. Please disable IM, email, Lync, and other such communication programs
before beginning the exam.

Resources for Part 1: One 8 1/2" by 11" double-sided sheet of notes plus the UML Cheatsheet
and the OO Principles pages linked from the course schedule. Closed book, closed computer,
closed electronic devices.

Resources for Part 2: Open book, open notes, and open computer. Limited network access. You
may use the network only to access your own files and Moodle sites, the course web pages, the
textbook’s site, and Oracle’s Java website (including API documentation).

Any communication with anyone other than an exam proctor during the exam may result in a
failing grade for the course.

Part 1 is included in this document. You should read over all of the questions before beginning
work, but. . .

You must turn in part 1 before accessing the resources for part 2.

Problem Poss. Pts. Earned
1 6
2 8
3 6
4 6
5 9

Paper Part Subtotal 35
Computer Part Subtotal 65

Total 100

1



Part 1—Paper Part
1. (6 points) Consider the following initial array configuration. In each question, assume we
want to sort the array in ascending order (1 is less than 2, 2 is less than 3, etc.).

9 5 7 10 18 1 12 8 16 4

a. (3 points) Suppose the insertion sort algorithm is applied to the initial array above. Show
the state of the array immediately following each of the first three iterations of the outer
loop. Please clearly mark (as in 0th) the sorted part of the array after each iteration.

0st iteration:

9 5 7 10 18 1 12 8 16 4

1st iteration:

2nd iteration:

3r d iteration:

b. (1 point) Suppose the merge sort algorithm from class is applied to the initial array above.
Show the state of the two sub-arrays immediately before the final merge.

c. (2 points) Suppose the selection sort algorithm from class is applied to the initial array
above. In the boxes below, show the state of the array immediately following each of the
first two iterations of the outer loop. Please clearly mark the sorted part and the unsorted
part of the array after each iteration. (Initially the sorted part of the array is empty.)

1st iteration:

9 5 7 10 18 1 12 8 16 4

2nd iteration:

3r d iteration:

2



2. (8 points) Answer the questions below on the sorting, searching and data structures that we
discussed in class. Assuming that you are given an ArrayList of unsorted CSSE 220 student ids
(integer), what is the runtime (Big-O) for each algorithms below, write the Big-O runtime in the
worst case. In each case “n” refers to the length of the array.

You want to add a new student to the start of the arraylist:

One of the student’s id got messed up, so you need to replace that id with the correct one (as-
sume that you are given the arraylist, incorrect id, and correct id):

You need to sort the arraylist in ascending order; it currently has student ids in no particular
order:

Insertion sort: , Merge sort:

Now that you have the sorted arraylist, we want to find a student with the given id:

Brute force array search using a for loop: , Binary search:

Now we have a transfer student who is just enrolled in CSSE 220 and was appended to the ar-
raylist. She has the highest id by chance (so the arraylist is still sorted), but you are still asked to
sort the arraylist again:

Insertion sort: , Merge sort:

3



Page 1 of 1

2/15/2018http://www.plantuml.com/plantuml/svg/SoWkIImgAStDuKhEIImkLl19BKlDgURApIzBT...

Design A

Page 1 of 1

2/15/2018http://www.plantuml.com/plantuml/svg/TT2z2i8m403W_PuYT59BNg23r4KSxEJI8WvH...

Design B

3. (6 points)

In a particular video game, there are pieces called heroes and monsters. Heroes and monsters
move differently from each other. The move is a complex determination which requires specific
data that is updated over the monster and hero’s lifetime. The game must support giving each
piece the opportunity to move.

a. (3 points) Identify the problem in Design A that Design B is attempting to fix. Please iden-
tify one problem and give at least one sentence (and no more than 3) explaining the de-
tails of the issue you have identified.

b. (3 points) Identify the main problem in Design B. Please give at least one sentence (and
no more than 3) explaining the details of the issue you have identified. (If you see more
than one problem, feel free to identify and describe more than one but we will be looking
for one main problem.)

4



4. (6 points) Give the Big–O runtime for each of the code snippets below. In each case, n refers
to the size of the input list. Answers are worth 2 points each.

a.
public static void function1(int[] array) {

for(int i = 0; i < 100; i++) {
for(int j = 0; j < array.length; j++) {
array[j] += i;

}
}

}

Answer:

b.
public static void function2(int[] array) {

for(int i = 0; i < array.length; i++) {
for(int j = 0; j < i; j++) {

if(array[i] != array[j]) {
array[j] = array[i];

}
}

}
}

Answer:

c.
public static void function3(int[] array) {

for(int i = 1; i <= array.length; i++) {
for(int j = array.length; j >= 1; j = j / 2) {

if(array[i-1] <= array[j-1]) {
array[j-1] = array[i-1];

}
}

}
}

Answer:

5



5. (9 points) Use the code below to answer the associated questions.

interface Calc {
double add(double a, double b);
double sub(double a, double b);

}

abstract class ACalc implements Calc {
public double add(double a, double b) {

return a + b;
}

}

class WeirdCalc implements Calc {
public double add(double a, double b) {

return a - b + (a + b) - a + b;
}

public double sub(double a, double b) {
return a - b;

}

public double mul(double a, double b) {
return a * b;

}
}

class SimpleCalc extends ACalc {
public double sub(double a, double b) {

return a - b;
}

}

class CoolCalc implements Calc {
Calc first, second;

public CoolCalc(Calc first, Calc second) {
this.first = first;
this.second = second;

}

public double add(double a, double b) {
return first.add(a, b);

}

public double sub(double a, double b) {
return second.sub(a, b);

}

public double mul(double a, double b) {
return a * b;

}
}

a. (3 points) Draw a UML class diagram that shows the relationships among the above classes.

6



b. (6 points) Using the declarations from the previous classes: Consider each of the code
snippets independently (that is, errors and declarations in one do not affect the others).
For each, write the output. If the code snippet results in an error, indicate the type of error
(either Compile-time or Runtime error). If there is no output, write “No output”.

i
Calc c = new SimpleCalc();
System.out.println(c.add(10, 10));

ii
ACalc c1 = new WeirdCalc();
System.out.println(c1.sub(20, 10));

iii

CoolCalc c2 = new CoolCalc(
new SimpleCalc(),
new WeirdCalc());

System.out.println(c2.add(20, 10));

iv

Calc c3 = new SimpleCalc();
System.out.println(

((WeirdCalc)c3).mul(10, 10));

v
Calc c4 = new ACalc();
System.out.println(c4.add(20, 10));

vi

Calc c5 = new WeirdCalc();
System.out.println(

(WeirdCalc)c5).mul(10, 10));

7


