
CSSE 220

Objects

Check out SuperSimpleObjects and TeamGradebook from SVN

Plan for today

• Talk about object references and box and
pointer diagrams

• Talk about static methods

• Continue working on writing your own classes

• Get started on TeamGradebook, your new
assignment

Exercise

• Complete the StudentAssignments problem in
the SuperSimpleObject project (or the one
from last class)

TeamGradebook

• Just a quick demo

OBJECT REFERENCES

Differences between primitive types and object types in Java

What Do Variables Really Store?

• Variables of primitive type store values

• Variables of class type store references

1. int x = 10;

2. int y = 20;

3. Rectangle box = new Rectangle(x, y, 5, 5);

10x

20y

5

10

20

5

box

Assignment Copies Values
• Actual value for number types

• Reference value for object types

– The actual object is not copied

– The reference value (“the pointer”) is copied

• Consider:

1. int x = 10;

2. int y = x;

3. y = 20;

4. Rectangle box = new Rectangle(5, 6, 7, 8);

5. Rectangle box2 = box;

6. box2.translate(4, 4);

10x

10y 8

5

6

7
box

× 20
box2

× 9

× 10

Reference vs Value Equality

String t1 = "hello";

String t2 = "hello";

System.out.println(t1 == t2);

System.out.println(t1.equals(t2));

What gets printed? What gets printed here?

l1

10

21

May print true or false

Prints true

l2

10

21

ArrayList<Integer> l1 = new ArrayList<Integer>();

l1.add(1);

l1.add(2);

ArrayList<Integer> l2 = new ArrayList<Integer>();

l2.add(1);

l2.add(2);

System.out.println(l1 == l2);

System.out.println(l1.equals(l2));

Prints true

Prints false

== operator compares references of two objects

equals(), in general, compares values of two objects

Boxes and lines exercise

Q1 – Q11

STATIC

Understanding static

public class Student {
private String name;
private char grade;

public Student(
String name,
char grade){

this.name = name;
this.grade = grade;

}

@Override
public String toString() {
return name +

" has a grade of "
+ grade;

}
}

Why fields can’t always be static

OUTPUT:
Adam has a grade of A
Bryan has a grade of B
Chris has a grade of C

public static void main(String[] args) {
Student a = new Student("Adam", 'A');
Student b = new Student("Bryan", 'B');
Student c = new Student("Chris", 'C');
System.out.println(a);
System.out.println(b);
System.out.println(c);

}

public class Student {
private String name;
private static char grade;

public Student(
String name,
char grade){

this.name = name;
this.grade = grade;

}

@Override
public String toString() {
return name+

" has a grade of "
+ grade;

}
}

Why not make the grade static?

OUTPUT:
Adam has a grade of C
Bryan has a grade of C
Chris has a grade of C

public static void main(String[] args) {
Student a = new Student("Adam", 'A');
Student b = new Student("Bryan", 'B');
Student c = new Student("Chris", 'C');
System.out.println(a);
System.out.println(b);
System.out.println(c);

}

Static means there's only one instance of a
field/method for every instance of a class that's
created. So when you change a grade, they all change.

When do we make methods static?

• Utility Methods

– Things like abs, sqrt, etc.

– Don’t need an instance of a class to run them

• How do I know?

– No references to non-static fields/methods

– No “this” keyword used in method

public class Car {

double mileage;

//other stuff

public double getMilesTravelled() {
return this.mileage;

}

public static double convertMilesToKm(double numberOfMiles) {
return numberOfMiles * 1.609344f;

}

}

//Elsewhere…

//requires you to have a car object
Car myCar = new Car();
//requires you to have a car object
System.out.println(myCar.getMilesTravelled());//output depends on code
//can be called on the class Car itself

System.out.println(Car.convertMilesToKm(77));//output is 123.919488

public class Bicycle {

private int speed;
private static int numCreated = 0;

public Bicycle(int speed) {
this.speed = speed;
Bicycle.numCreated++;

}
public int getSpeed() {

return this.speed;
}
public static int getNumCreated() {

return Bicycle.numCreated;
}

}
//No requirement to have a Bicycle yet…
System.out.println(Bicycle.getNumCreated());
Bicycle myBike1 = new Bicycle(18);
Bicycle myBike2 = new Bicycle(1);
System.out.println(Bicycle.getNumCreated() + " " + myBike1.getSpeed());

0

2 18
Q12 - Q16

Exercise

• Complete the StudentAssignments problem in
the SuperSimpleObject project

• Start working on the TeamGradeBook
homework. Try to finish the code for both
add-student, add-absence and get-absences
today

• If you are confused about what to do, get
help!

