
Name: Section:

CSSE 220—Object-Oriented Software Development

Exam 2 – Part 2, Oct. 23, 2015
Allowed Resources on Part 2. Open book, open notes, and computer. Limited network ac-
cess. You may use the network only to access your own files, the course Moodle and Piazza sites
(but obviously don’t post on Piazza) and web pages, the textbook’s site, Oracle’s Java website,
and Logan Library’s online books.

Instructions. You must disable Microsoft Lync, IM, email, and other such communication pro-
grams before beginning part 2 of the exam. Any communication with anyone other than the in-
structor or a TA during the exam may result in a failing grade for the course.

You must actually get these problems working on your computer. Almost all of the credit for
the problems will be for code that actually works. There are several different small methods to
write, so you can get a lot of partial credit by getting some of them to work. If you get every part
working, comments are not required. If you do not get a method to work, comments may help
me to understand enough so I can give you (a small amount of) partial credit.

Begin part 2 by checking out the project named Exam2-201610 from your course SVN repos-
itory. (Ask for help immediately if you are unable to do this.)

When you have finished a problem, and more frequently if you wish, submit your code by com-
mitting it to your SVN repository. We will check commit logs, so you must be careful not to
commit anything after the end of the exam. For grading, we will ensure that the included JUnit
tests have not been changed.

Part 2 is included in this document. Do not use non–approved websites like search engines
(Google) or any website other than those mentioned above. Be sure to turn in these instruc-
tions, with your name written above, to your exam proctor. You should not exit the examination
room with these instructions.

1



Problem Descriptions

Part C1: Recursion Problems (15 points)

The class Recursion in the recursion package contains 4 recursion problems (test cases are also
included). You only need to solve 3 of the 4 problems. Leave the problem you chose to skip blank
and leave a comment saying that you skipped it. These problems must be solved with recursion
- a working solution with loops is worth no credit.

Part C2: Polymorphism Problem (5 points)

The code provided in the polymorphism package does not compile. Fix the code by adding the
missing pieces so that the code compiles. You are not allowed to remove any of the provided
code.

Part C3: Adder (15 points)

The window after adding the button for Part 1.

In the package adder is code for a GUI framework for a simple calculator that simply adds and
subtracts integers. You need to write the event-handling code and any other code that is nec-
essary to make the adder work as expected. Comments in AdderMain show examples of what
should be displayed when various buttons are pressed.

Stage 1 (5 points) Write code in ButtonPanel to allow pressing a number key to work like on a real
calculator. The value of the number represented by the sequence of key presses is to be
displayed in the textfield positioned in the northern region of the GUI.

Note that getting rid of the leading zero can be a bit tricky, so you are NOT required to
implement that. Implementing it will not earn you extra credit.

2



Stage 2 (5 points) Add code in AdderMain to add a Clear button to the frame and to allow pressing
the Clear button to set both the displayed value and the sum to 0.

Stage 3 (5 points) Modify the code in ButtonPanel to allow pressing the + button to add the cur-
rent displayed value to the sum and display the new sum. Likewise, pressing the - button
should subtract the current displayed value from sum and display the new sum.

3


