Name: Section: CM:

CSSE 220—O0Object-Oriented Software Development
Final Exam — Part 2, Nov. 20, 2015

Allowed Resources for Part 2. Open book, open notes, and computer. Limited network ac-
cess. You may use the network only to access your own files, the course Moodle and Piazza sites
(but obviously don’t post on Piazza) and web pages, the textbook’s site, Oracle’s Java website,
and Logan Library’s online books.

Instructions. You must disable Microsoft Lync, IM, email, and other such communication pro-
grams before beginning part 2 of the exam. Any communication with anyone other than the in-
structor or a TA during the exam may result in a failing grade for the course.

You must actually get these problems working on your computer. Almost all of the credit for
the problems will be for code that actually works. There are several different small methods to
write, so you can get a lot of partial credit by getting some of them to work. If you get every part
working, comments are not required. If you do not get a method to work, comments may help
me to understand enough so I can give you (a small amount of) partial credit. NOTE: CODE
THAT DOES NOT COMPILE MAY NOT BE ELIGIBLE FOR PARTIAL CREDIT!

Begin part 2 by checking out the project named Final-201510 from your course SVN reposi-
tory. (Ask for help immediately if you are unable to do this.)

When you have finished a problem, and more frequently if you wish, submit your code by com-
mitting it to your SVN repository. We will check commit logs, so you must be careful not to
commit anything after the end of the exam. For grading, we will ensure that the included JUnit
tests have not been changed.

Part 2 is included in this document. Do not use non-approved websites like search engines
(Google) or any website other than those listed above. Be sure to turn in the these instructions,
with your name written above, to your exam proctor. You should not exit the examination room
with these instructions.

Part 2—Computer Part

Problem Descriptions

Part A: 3 Linked List (15 points) Implement the code for the 3 unimplemented methods in
StringLinkedList.java — each problem is worth 5 points. Instructions are included in the com-
ments of each method. Unit tests are included in StringLinkedList Test.java.

Part B: 2 Recursion (10 points) Implement the code for the 2 unimplemented methods in Recur-
sionProblems.java — each problem is worth 5 points. Instructions are included in the comments
of each method. Unit tests are included in RecursionProblemsTest.java.

Part C: 1 HashMap (5 points) Implement the code for the single unimplemented method in
HashMapQuestion.java — this problem is worth 5 points. Instructions are included in the com-
ments of the file and corresponding unit tests are included in HashMapQuestionTest.java.

Part D: Multithreading (10 points) The code in ThreadsCommand.java is designed to simulate
a system that both starts and stops threads. The system has 3 commands:

a. create. Creates a new, independently running thread with a new thread number (starts at
1 and goes up with each new thread). Created threads don’t really do anything, but every
5 seconds they print a message like “Thread NUM checking in every 5 seconds”.

b. stopall. This command stops all running threads. The threads need to exit gracefully —
they shouldn’t be killed manually using Thread.stop(). When a thread is stopped it should
print “Thread NUM stopping gracefully”. Threads don't have to stop immediately when
you execute the stopall command — they can stop within 5 seconds. However, once stopall
is called no existing threads should print checkin messages.

c. exit. Ends the program. Does not need to do anything special with the threads and it’s
already implemented for you.

Using the system you can start several threads, then stop them, then start some more. For ex-
ample:

Welcome to ThreadCommand. Enter your commands.

create

Thread 1 checking in every 5 seconds
Create

Thread 2 checking in every 5 seconds
Thread 1 checking in every 5 seconds
Thread 2 checking in every 5 seconds
Thread 1 checking in every 5 seconds
Create

Thread 3 checking in every 5 seconds
Thread 2 checking in every 5 seconds
Thread 1 checking in every 5 seconds
Thread 3 checking in every 5 seconds
Thread 2 checking in every 5 seconds
stopall

Thread 1 stopping gracefully

Thread 3 stopping gracefully

Thread 2 stopping gracefully

Create

Thread 4 checking in every 5 seconds
Thread 4 checking in every 5 seconds
stopall

Thread 4 stopping gracefully

exit

Implement the create and stopall commands. You can create classes in new files or just modify
the file given.

) Move some rectangles =) Move some rectangles =

. Move some rectangles

v] [oomn |[terr | mem v] oo | [z | [memn |

Stage 1 (left) - a rectangle that moves towards mouse clicks. Stage 2 - a rectangle that moves
when you press UI buttons. Stage 3 (right) random rectangles of both types. Note that initial
rectangle position is random.

Part E: Moveable Rectangle

Start by running and understanding the given code. You have been provided with a class called
MoveableRectangle. MoveableRectangles start in random locations, have velocities, and never
move off the given window. The code in MoveableRectangleComponent makes the MoveableRect-
angles animate.

Stage 1 (10 Points) Make a new subclass of MoveableRectangle called MouseMoveableRectan-
gle. MouseMoveableRectangles should implement the MouseListener interface and re-
spond to mouse clicks on the screen. When the user clicks on the screen, the Mouse-
MoveableRectangle should move in the direction of the click. It doesn’t need to stop once
it gets to the location though - it can continue on past. Add one MouseMoveableRectangle
to the screen to prove your code works — it should be yellow. If you can't figure out how

to get the code working using a subclass of MoveableRectangle, you can implement the
animated moving rectangle some other way and still get full credit for Part 1. BUT doing
so will make it almost impossible to do part 3.

Stage 2 (10 Points) Make a new subclass of MoveableRectangle called ButtonMoveableRectangle.
ButtonMoveableRectangles are controlled by 4 buttons at the bottom of the screen: UP,
DOWN, LEFT, RIGHT. If up is pressed, all ButtonMoveableRectangles should start going
up (and the other buttons should work simlarly). Add buttons to the frame to control But-
tonMoveableRectangles. Add one ButtonMoveableRectangle to the screen to prove your
code works — it should be blue. If you can'’t figure out how to get the code working using a

subclass of MoveableRectangle, you can implement the button controlled rectangle some
other way and still get full credit for Part 2. BUT doing so will make it almost impossible
to do part 3.

Stage 3 (10 Points) Now make a 10 element array of MoveableRectangles in RectangleCompo-
nent called rectangles. When a new MoveableRectangleComponent is constructed, that
list should be RANDOMLY populated with ButtonMoveableRectangles and MouseMove-
ableRectangles. There should be a 50/50 chance of one or the other appearing at a partic-
ular spot in the list. Modify the code so all the rectangles are displayed. The new random
rectangles should all be pink. Each random rectangle should still do its correct moving
behavior (move based on mouse clicks or move based on buttons).

