
Name: Section: CM:

CSSE 220—Object-Oriented Software Development

Exam 2, Oct. 19, 2016
This exam consists of two parts. Part 1 is to be solved on these pages. There is an additional
blank page at the end of Part 1 if you need more room. Part 2 is to be solved using your com-
puter, and will be taken on Friday. You will need network access to download template code and
upload your solution for part 2.

Resources for Part 1: You may use a single sheet of 8 1
2 ×11 inch paper with notes on both sides.

Your computer must be closed the entire time you are completing Part 1.

Resources for Part 2: This portion is open book, notes, and computer but with limited network
access. You may use the network only to access your own files, the course Moodle site and web
pages, Piazza (though do not post/respond to questions), the textbook’s site, Oracle’s Java web-
site, and Logan Library’s Safari Tech Books Online. Any communication with anyone other than
the instructor or a TA during the exam may result in a failing grade for the course.

When you have finished Part 1, please turn it in and then wait
quietly for the programming exam review portion of class to

begin.

Problem Poss. Pts. Earned
1 5
2 10
3 9
4 4
5 16
6 12

Paper Part Subtotal 56

C1. Recursion problems 21
C2. Polymorphism problem 6

C3. GUI problem 17
Computer Part Subtotal 44

Total 100

1



Part 1—Paper Part
1. (5 points)

The following sentences each describe the design of a different object oriented system. Label
each of them with one of the following phrases that best match (you’ll use each phrase exactly
once): High Coupling, Low Coupling, High Cohesion, Low Cohesion, and None (for the descrip-
tion that isn’t really describing coupling or cohesion).

You notice a class named ImageOrDate which, depending on how you
initialize it, can handle image manipulation or computing the number of days between dates.

Rather than using a method to avoid duplication, a programmer cuts and
pastes the same code in 4 parts of one class.

The DataCalculator class in your system does not depend on any other
classes.

Every other class in the system has a field of type GUIHandler, which
handles all input and output with the user.

You take a large class and split it into two smaller classes, each of which
does one conceptual thing.

2. (10 points) This problem is a design exercise. First, read the problem description below. Then
answer the questions.

Imagine an auction system that auctions a small number of items each day. Each item auc-
tioned has an id number and a brief description. Throughout the day, users can stop by and
view the items available today and decide to bid a specific amount for each item they want to
bid on; they can’t see what others have bid. Users are identified by a name and unique bidder
number. Then, at the end of the day the owner enters the “end auction” command into the sys-
tem. The user with the highest bid for that item wins the auction. Then, the next day, the users
can come by, see the items they won, and pay for their bids.

Don’t worry about a GUI for this problem – assume the employees access the system using a
very simple web-based system built entirely in the Main class.

2



a. (5 points) Draw a UML class diagram showing how you would design this system. You do
not need to include every method or field - just the important ones. It should be clear
from your diagram how all the data mentioned above is stored, and it should follow the
OO principles we’ve discussed in class.

Be sure to include the class that contains main, you can assume this class also includes
methods: handleBid, handleEndAuction, getItemsWonByUser.

b. (5 points) Describe in a few sentences what happens when the handleEndAuction com-
mand is executed. Make it clear what methods call what other methods. Reference what
you wrote in your UML class diagram as much as possible.

3



3. (9 points) Use this UML class diagram to answer the subsequent questions.

<<Interface>>
FaceMelter

yourFace()
melt()

coolYourHands()
CoolestClass

throwDown()
call()

OtherClass

initialize()
MyLittleHelper

var1

calibrate()
uncalibrate()
fabricate()

Calibrator

create()
destroy()

CreatorClass

setSpeed()
reduceSpeed()
increaseSpeed()

TurboClass
*

a. (5 points) Circle true or false for each of the following statements.

T F OtherClass objects must have a yourFace() method AND a melt() method

T F MyLittleHelper objects must have a yourFace() method AND a melt() method

T F CoolestClass is a subclass of Object

T F The diagram implies that multiple Calibrator objects can point at the same
TurboClass object

T F If you have a Calibrator object c, this code will compile: c.melt();

b. (2 points) Which of these could explain the line between Calibrator and CreatorClass?

(a) Calibrator has a field of type CreatorClass

(b) CreatorClass has a field of type Calibrator

(c) The method calibrate() in Calibrator uses a local variable of type CreatorClass

(d) The method create() in CreatorClass uses a local variable of type Calibrator

(e) None of the above could explain the relationship

c. (2 points) If you added a method foo() to OtherClass, what other classes must change? (If
no other classes need to change, write “none”)

4



4. (4 points) Consider the following code.

public static void innerFunction(int val) throws IllegalStateException {
System.out.println("before");
if(val == 0)

throw new IllegalStateException("Zero is bad");
System.out.println("after");

}

public static void outerFunction() throws NullPointerException {
try {

innerFunction(0);
System.out.println("after2");

} catch (IllegalStateException e) {
System.out.println("catch1");

}
}

public static void main(String[] args) {

try {
outerFunction();
System.out.println("after3");

} catch (NullPointerException e) {
System.out.println("catch2");

}

}

What does this code print?

5



5. (16 points) Consider the following related declarations:

public abstract class A {
public abstract void one();
public void two() {

System.out.println("A2");
}

}
public class B extends A{

public void one() {
System.out.println("B1");

}
public void two() {

System.out.println("B2");
}
public void four() {

two();
System.out.println("B4");

}
}

public class C extends B{
private ArrayList<D> forwarders;
public C() {

forwarders = new ArrayList<D>();
forwarders.add(new D());
forwarders.add(new D());

}
public void three() {

System.out.println("C3");
}
public void two() {

System.out.println("C2");
}

}
public class D {

public void two() {
System.out.println("D2");

}
}

a. (4 points) Draw a UML diagram to represent the given interface and classes. Include all
methods, but when writing subclass methods, only show a method on the subclass if the
subclass method overrides the parent class’s method, or if the method is specific only to
the subclass:

6



b. (12 points) Continuing the same problem, suppose we declare and initialize these vari-
ables:

A ac = new C();
B bb = new B();
B bc = new C();

For each line of code below, if the line results in an error, circle the appropriate error;
otherwise, provide the output in the provided blank. If the code works but does not print
anything, write “nothing”. Consider each line of code separately. That is, if a line would
give an error, then assume that line doesn’t affect any others. If the result would print on
multiple lines, remove the newline from your result and show it on a single line.

Code Either circle the error or provide the output

bc.three(); runtime error compile error

bc.two(); runtime error compile error

ac.two(); runtime error compile error

((A) ac).two(); runtime error compile error

((C) ac).three(); runtime error compile error

((A) bc).three(); runtime error compile error

((D) bc).two(); runtime error compile error

C cc = bc; runtime error compile error

A ab = bb; runtime error compile error

A aa = new A(); runtime error compile error

ac.one(); runtime error compile error

bc.four(); runtime error compile error

7



6. (12 points) For this problem, use the frame technique we practiced in the course to trace the
execution of the recursive function call. Start your trace with the first call to mystery on line 14.
A frame template is provided for your reference.

Once you are finished, answer the question at the bottom of the page.

1 public class Foo {
2 public static String mystery(String s) {
3 if (s.length() <= 2) {
4 return "x";
5 }
6 char ch = s.charAt(0);
7 if (ch == ’a’) {
8 return mystery(s.substring(2)) + ch + ch;
9 } else {

10 return mystery(s.substring(2)) + ch;
11 }
12 }
13
14 public static void main(String[] args) {
15 System.out.println(mystery("earth"));
16 }
17 }

functionName
        parameters
        local variables

        return value
val

functionName
        parameters
        local variables

        return value val

(Value from 
recursive call)

return value
(Value from 

recursive call)

For the code above, what would the final output be?

8



Use this page for additional workspace if you need it.

9


