Name: Section: CM:

CSSE 220—O0Object-Oriented Software Development
Final Exam — Part 1, Nov. 20, 2014

This exam consists of two parts. Part 1 is to be solved on these pages. You may use the back of
a page if you need more room. Please indicate on the front if you do so. Part 2 is to be solved
on your computer. You will need network access to download template code and upload your
solution for part 2. Please disable IM, email, Lync, and other such communication programs
before beginning the exam.

Resources for Part 1: One 8 1/2" by 11" double-sided sheet of notes, closed book, closed com-
puter, closed electronic devices.

Resources for Part 2: Open book, notes, and computer. Limited network access. You may use the
network only to access your own files, the course Piazza and Moodle sites, the course web pages,
the textbook’s site, and Oracle’s Java website. Any communication with anyone other than the
instructor or a TA during the exam may result in a failing grade for the course.

Part 1 is included in this document. You should read over all of the questions before beginning
work, but...

You must turn in part 1 before accessing the resources for part 2.

Problem Poss.Pts. Earned

1 6

2 6

3 3

4 9

5 6

Paper Part Subtotal 30
Computer Part Subtotal 70
Total 100

Part 1—Paper Part

1. (6 points) Consider the following initial array configuration. In each question, assume we
want to sort the array in ascending order (that is, from smallest to largest).

25 67 83 44 52 8 15 36 0 10

a. (2 points) Suppose the insertion sort algorithm from class is applied to the initial array
above. In the boxes below, show the state of the array after the fourth execution of the
outer loop. Clearly mark the sorted portion and the unsorted portion separately. Note:
the sorted part of the array initially contains 1 element.

b. (2 points) Suppose the selection sort algorithm from class is applied to the initial array
above. Show the state of the array immediately following the third execution of the outer
loop. Clearly mark the sorted portion and the unsorted portion separately.

c. (2 points) Suppose the merge sort algorithm from class is applied to the initial array
above. Show the state of the two sub-arrays immediately before the final merge.

2. (6 points) Answer the questions below on the sorting and searching algorithms that we dis-
cussed in class.

a. Match the algorithms below with the Big-O runtime in the worst case for each by drawing
a clear line from between an algorithm and the answer.

Binary Search O(n?)
Selection Sort O(n)
Merge Sort O(logn)
O(nlogn)

b. Match the algorithms below with the Big-O runtime in the best case for each by drawing
a clear line from between an algorithm and the answer.

Insertion Sort O(n?)
Selection Sort O(n)
Merge Sort O(nlogn)
O(logn)

3. (3 points) Predict the output for the code snippet below.

: Output:
System.out.print(fun(1, 1));

// elsewhere...
public static int fun(int x, int y){
if(x == 0)
returny + 1,
else if(y == 0)
return x + 1;
else {
int temp = fun(x, y-1);
return fun(x-1, temp);

4. (9 points) Give the Big-O runtime for each of the code snippets below. Answers are worth 1
point each.

a. - - - Answer:
public void functl(int n) {

int result = 0;
for (inti=n;i>=0;i-) {
result +=1i * i *i;
for (int j = 0; j < 2005; j++) {
result +=j * i;
}

b. - - - - Answer:
public static void funct2(int n) {

for (inti=0;i<n;i++) {
System.out.printIn("Break!");
for (intj=0;j < (n*n) j++) {
System.out.printIn("Value of j: " + j);
}
}

for (inti=0;i<n;i++) {
System.out.printIn("Howdy");
}

C. - - - - Answer:
public static void funct3(int n) {

for (inti=0;i<n;i++) {
for (intj=1ij<n j++){
System.out.printIn("Whats up");
}

'| public void funct4(ArrayList<Integer> data, int value, int position) {
data.add(position, value); //add “value'" at index “position."”’
}

(i) Answer (Worst Case):

(ii) Answer (Best Case):

'| //LinkedList is a singly linked list that has only a first/head Node

//pointer (i.e., no last/tail Node pointer).

public void funct5(LinkedList<Integer> data, int value, int position) {
data.add(value, position); //insert value in new Node at “position”’

}

(i) Answer (Worst Case):

(ii) Answer (Best Case):

'| //LinkedList is a singly linked list that has only a first/head Node

//pointer (i.e., no last/tail Node pointer).

public void funct6(LinkedList<Integer> data, int position) {
data.remove(position); //delete Node at “position”

}

(i) Answer (Worst Case):

(ii) Answer (Best Case):

5. (6 points) Consider the following five related declarations about various modes of transporta-
tion in a simulation of city streets (Note: no constructors are provided, but when any of the
objects below are created, speed=0.0 and direction is always="N"):

interface T {
public void setVelocity(double speed, int turnDelta); //sets speed & direction
}

abstract class MV implements T {
double speed;
int curDirection; //the index in the directions array, e.g., 2 is NE
public static final String[] directions =
new Strlng[]{ IINWII' IINII, IINEII' IIEII, IISEII' IISII, IISWII, IIWII}

public void setVelocity(double speed, int turnDelta) {
this.speed = speed;
if(turnDelta |= 0)
this.turn(turnDelta); //>0 turns right, <0 turns left
System.out.print("speed: "+this.speed +
" direction:"+this.directions[this.curDirection]);

}

public void turn(int turnDelta) {
this.curDirection = (this.curDirection + turnDelta);
if(turnDelta > 0) //turning right
this.curDirection = this.curDirection % directions.length(); //wrap
else
if(this.curDirection < 0) //turning left
this.curDirection = directions.length() + this.curDirection;

}

public abstract void accelerate(int speedDelta);

class MC extends MV { class TK extends MC {
int currentGear; //constructor elided String wheel Type;
public void accelerate(int speedDelta) { public void turn(int turnDelta) {
this.speed += speedDelta; super.turn(turnDelta);
System.out.print("Speed:"” + this.speed); System.out.print(" TKTurn");
} }
} }

class C extends MV {
//constructor elided
public void setVelocity(double speed, int turnDelta) {
this.speed = speed + 9; //always cheat and go faster
System.out.print("speed” + this.speed +
" direction:" + this.directions|this.curDirection]);
}
public void accelerate(int speedDelta) {
this.speed += speedDelta;
System.out.print("Faster: " + this.speed);

Consider each of the following code snippets independently. (That is, errors in one question
will NOT affect the other questions.) For each, write the output, or if it is an error write the type
(compile-time or run-time error).

T t1 = new TK();
a.| t1.setVelocity(60, 1);

MV ml = new C();
b.| ((C)m1).setVelocity(90,-2);.

T t2 = new MC();
C.|t2.accelerate();

TK t3 = new MV();
d.|t3.turn(-2);

MC m2 = new TK();
€. m2.turn(4);

MC m3 = new MC();
f.| ((TK)m3).accelerate(20);

You must turn in your solutions to part 1
before accessing resources for part 2.

