Name:

CSSE 220—O0Object-Oriented Software Development
Exam 1, October 1, 2013

This exam consists of two parts. Part 1 is to be solved on these pages. If you need more space,
please ask your instructor for blank paper. After you finish Part 1, please turn in your Part 1
answers and then open your computers.

Part 2 is to be solved using your computer. You will need network access to download template
code and upload your solution for part 2. Please disable IM, email, and other such communi-
cation programs before beginning the exam. Any communication with anyone other than the
instructor or a TA during the exam, may result in a failing grade for the course.

Allowed Resources on Part 1: You are allowed one 8.5 by 11 sheet of paper with notes of your
choice. This section is not open book, open notes, and you cannot use your computer for this
part.

Allowed Resources on Part 2: Open book, open (printed physical) notes, and computer. Limited
network access. You may use the network only to access your own files, the course Moodle site
and web pages, the textbook’s site, Sun’s Java website, and Logan Library’s Safari Tech Books
Online.

Parts 1 and 2 are included in this document. You should read over all questions before beginning
work, but you must turn in part 1 before accessing resources for part 2.

Problem Poss.Pts. Earned
1

S Gl WY
[e>BN>IN) B ecRieopRde)

Paper Part Subtotal 40

Computer Part A Points Earned
findLargest 6

multiplylmaginaryByReal 6

combineStrings 6

findFirstLetterMatches 6

counté4s 6

Computer Part B

Example 1 functionality 10
Example 2 functionality 10
Example 3 functionality 10
Computer Part Subtotal 60
Total 100

Part 1—Paper Part

The next several questions all refer to a ImaginaryNum class. Below is a listing of this class show-
ing its fields, constructors, accessor methods, and mutator methods. The javadocs are omitted
to save space.

public class ImaginaryNum {
private double real, imaginary;

public ImaginaryNum(double real, double imaginary)

{

this.real = real;
this.imaginary = imaginary;

¥

public void setReal(double real)

{
}

public double getReal()
{

}

public ImaginaryNum addAndCreate(double real)

{

this.real = real;

return this.real;

ImaginaryNum add = new ImaginaryNum(real + this.real, this.imaginary);
return add,

}

public void setimaginary(double imaginary)

{
}

public String toString()

{
}

this.imaginary = imaginary;

return "r=" 4+ this.real + " ;=" + this.imaginary;

1. (9 points) Below are several code snippets that use the ImaginaryNum class. For each snippet,
first draw a box-and-pointer diagram showing the result of executing it. Then give the output of
the print statement at the end of the snippet.

int v.al =T, _ (a) Output:
ImaginaryNum num = new ImaginaryNum(val, val); Diagram:
val = 8; |

System.out.printIn(num.toString());

ImaginaryNum one = new ImaginaryNum(1,0); (b) Output:
ImaginaryNum two = one; Diagram:
two.setReal(2);

ImaginaryNum unknown = two.addAndCreate(1);
System.out.printin(unknown.getReal());

ImaginaryNum[] n = new ImaginaryNum[4]; (c) Output:

ImaginaryNum otherNum = new ImaginaryNum(1,1); Diagram:

for(inti=0;i < 3; i++) {
n[i] = otherNum;

}

System.out.printn(n[3]);

2. (6 points) For each code snippet below predict its output. (You do not need to draw a diagram,
but you may if it might help you.)

String[] data = new String[10];
data[0] = "Robot",
data[l] = "Pirate”,
data[2] = "Ninja",
System.out.printIn(data.length);

(a) Output:

double percent = 0.70;
int intPercent = (int) percent;
double result = (double) (100 * intPercent); (b) Output:

System.out.printIn(result);

ArrayList<String> al = new ArrayList<String>();
al.add("Hello");
al.add("World"); (c) Output:

System.out.printIn(al.get(1));

3. (8 points) For each for loop below, write down how many times its body will execute, or indi-

cate that we can't tell from the information given.

for (inti=0;i<=6; i++) {
// loop body elided
}

int maxTimer = 10;

while (maxTimer > 3) {
max T imer--;

}

int[] data = new int[10];
for(int data2 : data) {

// loop body elided
}

while(true) {
System.out.printIn("in loop body");
break;

(a) Answer:

(b) Answer:

(c) Answer:

(c) Answer:

4. (5 points) Explain the difference in behavior between the following two code examples (if
any). If they are functionally different, explain why they are different AND which one you would
prefer. If they are functionally the same, just write “They are the same.”.

System.out.printIn("Password?"); System.out.printIn("Password?");

Scanner in = new Scanner(System.in); Scanner in = new Scanner(System.in);

String secretWord = “secret”, String secretWord = "secret”,

if(secretWord.equals(in.next())) { and |if(secretWord == in.next()) {
System.out.printIn("You won!"); System.out.printIn("You won!");

} }

5. (6 points) For each of the code snippets below, there is a bug that causes the code to work
incorrectly (i.e. the problem is just not weird style). First circle the bug, then write code that fixes
the problem (if only one line is wrong, you only have to rewrite that one line).

ImaginaryNum seven;
seven.setReal(49.0/7);

Circle the bug in the code above and write code that fixes the problem:

String miss = "Mississippi";
miss.replace("i", "*");
System.out.printf("Mississippi without 'i’s: %s\n", miss);

Circle the bug in the code above and write code that fixes the problem:

6. (6 points) Unit Testing: Consider the documentation for the method below.

/**
* Repeats the given string a given number of times
*

* For example, repeatString("hello",3) returns "hellohellohello"
*
* ©param input
* ©param timesToRepeat
* @return input string repeated times ToRepeat times
Y/
public static String repeatString(String input, int timesToRepeat) {
// body code elided
}

In the table below, give three sets of values that would constitute a good test set for this method.
For each argument you list, say briefly why it should be in the unit test.

Argument to method Expected Result Why is this a good test?

a)

b)

c)

Part 2—Computer Part

Instructions. You must actually get these problems working on your computer. Almost all of
the credit for the problems will be for code that actually works. There are several different small
methods to write, so you can get a lot of partial credit by getting some of them to work. If you get
every part working, comments are not required. If you do not get a method to work, comments
may help me to understand enough so I can give you (a small amount of) partial credit.

Begin part 2 by checking out the project named Exam1 from your course SVN repository.
(Ask for help immediately if you are unable to do this.)

When you have finished a problem, and more frequently if you wish, submit your code by com-
mitting it to your SVN repository. We will check commit logs, so you must be careful not to
commit anything after the end of the exam. For grading, we will ensure that the included JUnit
tests have not been changed.

Problem Descriptions

Part A: 5 Small Problems. (30 points) Implement the code for the 5 functions in PartA.java. In-
structions are included in the comments of each function. Unit tests are included in PartAT-
ests.java.

Part B: Checkerboard (30 points)

Read over all these instructions carefully. Make sure you understand completely what func-
tionality you have to implement before you start coding. Ask if any part of the instructions are
unclear.

Implement the Checkerboard class. The checkerboard class represents a board made up of rows
and columns of rectangles. Checkboards can be positioned at various x and y coordinates, can
have various widths and heights, and can have 2 to any number of colors in the board pat-
tern.

The way colors in the checkerboard should work is that they form a repeating pattern as you
read across the row: white, black, white, etc. When you get to a new row you just continue with
the pattern. The pattern always starts with white then black. If new colors are added they are
inserted in the pattern at the end. So if you add green the pattern becomes white, black, green,
white, black, green, etc. If you add green and then red the pattern becomes white, black, green,
red, white, etc.

You are allowed to implement the Checkerboard’s functions in any order you wish. However,
to make your life easier we have set up 3 separate examples that make for a good order to im-
plement functionality in. Bear in mind that as you implement later examples earlier examples
should keep working.

Example 1 If the Checkerboard constructor is invoked and then the board is immediately drawn (i.e.
no set methods are called on it), it creates a 3 column 2 row board with a height of 500 pix-
els and width of 750 pixels — see Figure 1 for how it should look. The method drawExam-
plel in CheckerboardComponent shows how the Checkerboard class is invoked. To make
this example work you only need to implement the Checkerboard constructor and the
drawOn method.

:

|

i
'r"'r.-:

Example 2

Example 3

Figure 1: Example 1 (left). Example 2 (center). Example 3 (right).

Now add functionality to set the height, width, number of columns, and number of rows.
The method drawExample2 shows how these functions are invoked — see Figure 1 for
what it should look like when finished. You'll need to modify the paintComponent code
in CheckerboardComponent very slightly to use drawExample2. To make this example
work you need to implement setHeight, setWidth, setNumberOfRows, and setNumberOf-
Columns. You'll also likely need to update the way drawOn works.

Now add the functionality to add new and different colors. Any arbitrary number of col-
ors can be added by repeatedly calling the addColor function. Look at drawExample3 to
see how addColor is used (again you'll have to modify paintComponent to test using the
drawExample3) — you can see the result in Figure 1. You'll need to implement addColor
and modify the drawOn functionality to make this example work.

PartA Points Earned

findLargest 6
multiplylmaginaryByReal
combineStrings
findFirstLetterMatches
counté4s

Part B Checkerboard
Example 1 functionality 10
Example 2 functionality 10
Example 3 functionality 10
Computer Part Subtotal 60

[e2 el RNop)

10

