
Name: Section:

CSSE 220—Object-Oriented Software Development

Exam 1 – Part 2, Dec. 18, 2015
Allowed Resources on Part 2. Open book, open notes, and computer. Limited network ac-
cess. You may use the network only to access your own files, the course Moodle and Piazza sites
(but obviously don’t post on Piazza) and web pages, the textbook’s site, Oracle’s Java website,
and Logan Library’s online books.

Instructions. You must disable Microsoft Lync, IM, email, and other such communication pro-
grams before beginning part 2 of the exam. Any communication with anyone other than the in-
structor or a TA during the exam may result in a failing grade for the course.

You must actually get these problems working on your computer. Almost all of the credit for
the problems will be for code that actually works. There are several different small methods to
write, so you can get a lot of partial credit by getting some of them to work. If you get every part
working, comments are not required. If you do not get a method to work, comments may help
me to understand enough so I can give you (a small amount of) partial credit.

Begin part 2 by checking out the project named Exam1-201620 from your course SVN repos-
itory. (Ask for help immediately if you are unable to do this.)

When you have finished a problem, and more frequently if you wish, submit your code by com-
mitting it to your SVN repository. We will check commit logs, so you must be careful not to
commit anything after the end of the exam. For grading, we will ensure that the included JUnit
tests have not been changed.

Part 2 is included in this document. Do not use non–approved websites like search engines
(Google) or any website other than those above. Be sure to turn in the these instructions, with
your name written above, to your exam proctor. You should not exit the examination room with
these instructions.

1



Part 2—Computer Part

Problem Descriptions

Part A: Small Problems (24 points) Implement the code for the 3 functions in SmallProblems.java
– each problem is worth 8 points. Instructions are included in the comments of each function.
Unit tests are included in SmallProblemsTest.java.

Part B: Map and 2D Array Problems (18 points) Implement the code for the functions in Ma-
pAnd2dArray.java – each problem is worth 9 points. Instructions are included in the comments
of each function. Unit tests are included in MapAnd2DArrayTest.java.

Part C: Test This Class (6 points) Implement a unit test for the function in TestThisClass.java.
You will add a file TestThisClassTest.java that will contain your test. Your test should have 3
assertions that test a variety of cases, but need not be exhaustive.

Part D on next page

2



Stage 1 (left), Stage 2 (center), Stage 3 (right)

Part D: Rectangles (17 points)

Read over all these instructions carefully. Make sure you understand completely what function-
ality you have to implement before you start coding. Ask questions if any part of the instructions
are unclear.

Stage 1 (5 points) Uncomment the first block of code in RectComponent. Your task is to add a
new class, RedRect, that makes the given code work (you should NOT modify the code in
RectComponent).

RedRect’s constructor takes 4 parameters: x and y coordinates of the upper left corner of
the rectangle, and the x and y coordinates of the lower right corner of the rectangle. The
draw function should draw a red filled rectangle - if you draw it correctly it will match the
picture above.

Stage 2 (6 points) Uncomment the second block of code in RectComponent. Modify RedRect so
the code works.

When constructed with no parameters, the RedRect should have a random position with
an upper left corner with x between 0 and 400 and y between 0 and 400. The rectangle
should have a random width and height between 0 and 100. If you complete this code
successfully, your picture will not exactly match the picture given but you should see ran-
dom rectangles that change position/size when you resize the window.

Stage 2 (6 points) Uncomment the third block of code in RectComponent. Add a new class Rect-
Container to make the code work.

RectContainers have RedRects added to them with an addRect method. This method stores
data so that when draw is called, the RectContainer should be a black outline exactly large
enough to fit add of the rectangles that have been added to them. You may have to add
some methods to RedRect to make this possible.

If you complete this code successfully, your picture will not exactly match the picture
given, but both groups of rectangles should be exactly surrounded by a RectContainer
outline.

3


