
Name: Section:

CSSE 220—Object-Oriented Software Development

Exam 1 – Part 2, Dec. 19, 2013
Allowed Resources on Part 2. Open book, open notes, and computer. Limited network ac-
cess. You may use the network only to access your own files, the course Moodle and Piazza sites
(but obviously don’t post on Piazza) and web pages, the textbook’s site, Oracle’s Java website,
and Logan Library’s online books.

Instructions. You must disable Microsoft Lync, IM, email, and other such communication pro-
grams before beginning part 2 of the exam. Any communication with anyone other than the in-
structor or a TA during the exam may result in a failing grade for the course.

You must actually get these problems working on your computer. Almost all of the credit for
the problems will be for code that actually works. There are several different small methods to
write, so you can get a lot of partial credit by getting some of them to work. If you get every part
working, comments are not required. If you do not get a method to work, comments may help
me to understand enough so I can give you (a small amount of) partial credit.

Begin part 2 by checking out the project named Exam1-201420 from your course SVN repos-
itory. (Ask for help immediately if you are unable to do this.)

When you have finished a problem, and more frequently if you wish, submit your code by com-
mitting it to your SVN repository. We will check commit logs, so you must be careful not to
commit anything after the end of the exam. For grading, we will ensure that the included JUnit
tests have not been changed.

Part 2 is included in this document. Do not use non–approved websites like search engines
(Google) or any website other than those above. Be sure to turn in the these instructions, with
your name written above, to your exam proctor. You should not exit the examination room with
these instructions.

1



Part 2—Computer Part

Problem Descriptions

Part A: 5 Small Problems (30 points) Implement the code for the 5 functions in SmallProb-
lems.java – each problem is worth 6 points. Instructions are included in the comments of each
function. Unit tests are included in SmallProblemsTest.java.

Part B: Test This Class (5 points) Implement a unit test for the function in TestThisClass.java.
You will add a file TestThisClassTest.java that will contain your test. Your test should have 3
assertions that test a variety of cases, but need not be exhaustive.

Part C: User Input (6 points) Modify the empty class UserInput.java to add a main fundtion and
interact with the user on the console. Instructions are in the file itself.

Part D on next page

2



Stage 1 (left). Stage 2 (center). Stage 3 (right). Note that the dotted lines are just for reference
and are drawn for your by HourTimerComponent.

Part D: HourTimer (24 points)

Read over all these instructions carefully. Make sure you understand completely what func-
tionality you have to implement before you start coding. Ask if any part of the instructions are
unclear.

Implement the HourTimer class. The HourTimer demonstrates a circular timer that can repre-
sent any number of minutes (like a clock with only a minute hand).

A few details about how to draw the HourTimer:

• The minute hand’s length is 0.9 times the radius of the HourTimer
(RATIO_OF_HAND_LENGTH_TO_RADIUS).

• The minute hand’s width is 0.1 times the radius of the HourTimer
(RATIO_OF_HAND_WIDTH_TO_RADIUS).

• Initially the HourTimer should have it’s minute hand pointing vertically upward (repre-
senting 0 minutes).

Stage 1 The HourTimer should be able to be constructed with no parameters. In that case it is to
be drawn centered at the point 300,300 (DEFAULT_CENTER_X and DEFAULT_CEN-
TER_Y). Its default radius is 300 (DEFAULT_RADIUS).

Stage 2 You’ll need to uncomment the stage 2 code in HourTimerComponent.

Add a 3 parameter constructor. Use the example Stage 2 code in HourTimerComponent to
infer what the parameters ought to be. When you’re finished, the clocks should be able to
be drawn in different places and at different sizes.

Stage 3 You’ll need to uncomment the stage 3 code in HourTimerComponent.

Finally, add rotation. Implement the setTime function that takes a number of minutes as
a parameter. When this is set the minute hand should be drawn rotated to the appropriate
number of minutes, like the minute hand of a clock (e.g. 30 causes the hand to be drawn
vertically downward, 45 causes the hand to be drawn horizontally to the left, etc.).

3



Part A Points Earned
isMiddleCharacterQ 6

interleaveArrays 6
insertAtMiddle 6

addOneToArray 6
missingInt 6

Part B TestThisClass
Setup TestThisClassTest 2

Assert statements (1 point each) 3
Part C UserInput

Setup main method 2
Get user input 2

Display appropriate message 2
Part D HourTimer

Stage 1 functionality 8
Stage 2 functionality 8
Stage 3 functionality 8

Computer Part Subtotal 65

4


