Name:

CSSE 220—O0Object-Oriented Software Development
Exam 1, Jan. 4, 2011

This exam consists of two parts. Part 1 is to be solved on these pages. If you need more space,
please ask your instructor for blank paper. Part 2 is to be solved using your computer. You will
need network access to download template code and upload your solution for part 2. Please dis-
able IM, email, and other such communication programs before beginning the exam. Any com-
munication with anyone other than the instructor or a TA during the exam, or about the exam
with students in the other section, may result in a failing grade for the course.

Allowed Resources: Open book, notes, and computer. Limited network access. You may use the
network only to access your own files, the course ANGEL site and web pages, the textbook's site,
Sun’s Java website, and Logan Library’s Safari Tech Books Online.

Parts 1 and 2 are included in this document.

Part 1 is to be completed on paper. You may use the resources listed, but you must not enter any
code for part 1 on your computer.

Problem Poss. Pts. Earned
1 12
2 3
3 6
4 6
5 3
6 6
7 6
8 8
Paper Part Subtotal 50
Computer Part Subtotal 50
Total 100

Part 1—Paper Part

The next several questions all refer to an AngryBirdsGame class. Below is a listing of this class
showing its fields, constructors, accessor methods, and mutator methods. The javadocs are
omitted to save space. DO NOT TYPE THIS CLASS IN ECLIPSE.

public class AngryBirdsGame {
private int stage;
private int score;
private int level;
public static final int STAGES PER LEVEL = 22;

public AngryBirdsGame(int stage, int score, int level) {
this.stage = stage;
this.score = score;
this.level = level:

}

public AngryBirdsGame() {
this(1, 0, 1);
}

public void nextStage() {
this.stage++;
if (this.stage > AngryBirdsGame.STAGES PER LEVEL) {
this.level++:
this.stage = 1;

}

public void addScore(int score) {
this.score += score;
}

public int getScore() {
return this.score;
}

public int getlLevel() {
return this.level;
}

public int getStage() {
return this.stage;
}

1. (12 points) Below are several code snippets, many of which use the AngryBirdsGame class. For
each snippet, first draw a box-and-pointer diagram showing the result of executing it. Then give
the output of the print statement at the end of the snippet.

AngryBirdsGame g = (a) Output:
new AngryBirdsGame(22, 4980, 1); Diagram:

g.nextStage();

System.out.printin("Level: " + g.getLevel());

AngryBirdsGame gamel = .
new AngryBirdsGame(1, 50, 1); g)i)a(g);%l:lt'

AngryBirdsGame game2 = gamel;

game2.addScore(3850);

System.out.printIn("Score: " + gamel.getScore());

AngryBirdsGame[| games = new AngryBirdsGame[2]; () Output:

games[0] = new AngryBirdsGame(15, 15000, 2); Diagram:

games[1] = new AngryBirdsGame();
AngryBirdsGame ag = games[games.length - 1]
System.out.printIn("Level: " + ag.getLevel());

2. (3 points) In question 1(c) above, we used an array to hold our AngryBirdsGames. For an avid
player who enjoys playing Angry Birds, such a data structure would not be appropriate. Explain
why an ArrayList would be a better fit.

3. (6 points) For each code snippet below predict its output. Some refer to the AngryBirdsGame
class. (You do not need to draw a diagram, but you may if it might help you.)

AngryBirdsGame g =

new AngryBirdsGame(1, 200019, 2);
double x = g.getScore() / g.getLevel(); (a) Output:
System.out.printf("x = %8.2f%n", x);

AngryBirdsGame b =

new AngryBirdsGame(1, 400001, 4);
double y = b.getScore() / (double) b.getLevel(); (b) Output:
System.out.printf("y = %8.2f%n", y);

intm = 4;

if (m% 3==0){
System.out.printin(m + m);

} else { (c) Output:
System.out.println(m + "three");

¥

4. (6 points) Write down the output of running each code snippet below. If enough informa-
tion is not provided, indicate that we cannot tell. DO NOT TYPE THE CODE SNIPPETS FOR THIS
QUESTION IN ECLIPSE.

int value = 1;
for (inti=0;i<5; i++) {
value = value * 2;

} (a) Answer:
System.out.printIn("value = " + value); value =
int sum = 0;
int count = 0;
intn=>5;
for (inti=1i<=n;i+=2){
sum +=1, (b) Answer:
count++;
} count =
System.out.printIn("count = " + count);
System.out.printIn("sum = " 4+ sum); sum =
int x = 3;
intc=0;
boolean inc = false;
while (4 > x) {
if ((x > 0) && !(inc)) {
X--;
}else { (c) Answer:
X+,
inc = true; c=__
}
c++;
}
System.out.printin("c = " + ¢);

5. (3 points) Explain the difference in behavior between

AngryBirdsGame a = AngryBirdsGame a =

new AngryBirdsGame(. . .); new AngryBirdsGame(. . .);
AngryBirdsGame b = AngryBirdsGame b =

new AngryBirdsGame(. . .); and new AngryBirdsGame(. . .);

if (a == b){ if (a.equals(b)){

. ,

6. (6 points) Unit Testing: Consider the documentation for the method below.

/*
* Converts from United States Dollar (USD) to Canadian Dollar (CAD).
* Assumes 1.00 USD = 1.02 CAD.

*

* For example, usdToCad(10.0) yields 10.2.
*

* @param usCurrency
* @return Canadian equivalent
Y/
public static double usdToCad(double usCurrency) {
// body code elided
}

List three pairs of arguments and return values that would constitute a good test set for this
method. For each argument you list, say briefly why it should be in the unit test.

7. (6 points) For each of the code snippets below, first circle the bug, then fix it so that no more
errors exist in the code.

(a) Circle the bug in the code below and correct what's wrong:

Scanner scanner = new(System.in);

(b) Circle the bug in the code below and correct what’s wrong:

Ellipse2D.Double circle;

double w = circle.getWidth();

(c) Circle the bug in the code below and correct what’s wrong:

int NUM_OF GAMES = 4:

AngryBirdsGame[] games = new AngryBirdsGame[NUM OF GAMES];

System.out.printIn(games[0].getScore());

8. (8 points) Objects and classes
(a) What keyword indicates that a variable cannot change its value from its initial value?

Answer:

(b) In the statement: clock.setTime(12, 30, "PM");

an explicit parameter is

an implicit parameter is

(c) In a method definition, what keyword refers to the implicit parameter?

Answer:

(d) Generally, what visibility should fields have?

Answer:

Part 2—Computer Part

Instructions. You must actually get this problem working on your computer. Almost all of
the credit for the problem will be for code that actually works. There are several different small
methods to write, so you can get a lot of partial credit by getting some of them to work. If you get
every part working, comments are not required. If you do not get a method to work, comments
may help me to understand enough so I can give you (a small amount of) partial credit.

Begin part 2 by checking out the project named Exam1 from your course SVN repository.
(Ask for help immediately if you are unable to do this.)

When you have finished the problem, and more frequently if you wish, submit your code by
committing it to your SVN repository. We will check commit logs, so you must be careful not
to commit anything after the end of the exam. For grading, we will ensure that the included
JUnit tests have not been changed.

Problem Description

C1. (50 points) College students often build debt while they are in college. The kinds of debt they
accumulate might include Credit Card Debt, a Student Loan, an Auto Loan, a Personal Loan, and,
on rare occasions, a Mortgage. The provided Debt class is fully implemented and models a debt
item that might appear on a student’s credit report.

For this problem, you will complete an application that takes several Debt objects, calculates
the total debt and the percent of each kind of debt. Your application should display a pie chart
with a legend like in Figure 1 on page 10.

The provided DebtAnalysis class is already implemented. It has a main method that creates a list
of Debts and calls a helper method to do the display. (In a non-exam situation, this main method
would get the data from the user or a file. We hard-coded the data to simplify the problem.)
The helper method creates a JFrame to display the results, constructs a new DebtComponent
instance, and adds the instance to the frame.

Your task is to finish implementing the DebtComponent class so that it analyzes the list of Debts
and draws the pie chart with legend.

The program comments contain numbered “TODO:” items. Complete them in the given order.
JUnit tests for this problem are in DebtComponentTest.

Code that uses the DebtComponent class starts in DebtAnalysis. You only need to implement
DebtComponent. Debt and DebtAnalysis are completed already.

Ao Debt Analyst

2.8% Credit Card Debt
47.7% Student Loan
41.3% Mortgage

1.9% Personal Loan

6.3% Auto Loan

Figure 1: Example pie chart with legend

JUnit Test or Graphics Points Earned
analyzeDebts tests (2 each) 6
findTotalOfKind tests (2 each) 12
findPercentageOfKind tests (2 each) 12
Graphics drawing

Labels appear 3

Correct label text 3

Correct label formatting 3
Circle in right location 3

Pie slices of right size 3

Pie slices in right locations 3
Colors correct 2
Computer Part Subtotal 50

10

