
1

CSSE 220 – Object-Oriented Software Development

Exam 1 Topics

The exam has two parts:

 A closed-book, paper-and-pencil section. Topics for this section are drawn only from the

first two lists below. Questions might be short answer, fill-in-the-blank, multiple-choice,

true/false, or problems whose answer is a short code fragment.

 An open-book, on-the-computer section. You write code and turn it in via your

individual repository. See the third topic list below.

For the closed-book portion, you can use a single 8.5 inch by 11 inch “cheat sheet” (back and

front, with whatever you want on it, handwritten or typed). You may work with others to make

your cheat sheet, but you will probably find it most useful if you do much or all of it yourself.

For the open-book portion, you may use any written source, anything you can find on the

internet, and your computer. You may not communicate with any human being except your

instructor in any way during the exam, however.

Closed-book topics, things you should know:

1. Given a class, identify the:

a. Fields

b. Constructors

c. Methods

d. Type of variable blah

e. Visibility of variable blah

f. Return type of method blah

g. Number of parameters of method blah, and the types of those parameters

2. What style do we use for method names? Class names? Global constants? Getter’s?

Setter’s? Predicate methods?

3. What is the signature of a method?

4. What is the scope of a field? Of a parameter?

Of a local variable that is not a parameter?

5. What is the lifetime of a field? Of a parameter?

Of a local variable that is not a parameter?

6. List the seven primitive types.

7. What is the most commonly used type for whole numbers? For floating-point numbers?

8. What is the type for a string of characters, like “When the moon is in the Seventh House”?

9. How do object-type variables differ from primitive-type variables?

10. True or false: In Java, every variable has a declared type.

11. What keyword indicates that a method does not return a value?

Identifying elements of a class

Variables: scope, lifetime, type

2

12. The plus sign (+) has two meanings: what are they?

How does the compiler know which to use?

13. Explain the difference between the == operator and the equals method. When should you

use the == operator, and when the equals method?

14. True or false: We can define a method in Java that is not associated with any class.

15. How does a static method differ from a non-static method?

16. How does a static field differ from a non-static field?

17. What is the difference between a class and an instance of a class? What word do we use for

instances of classes (hint: begins with an “o”)?

18. What does the final keyword mean when applied to a variable, as in the following?

final int DEFAULT_RADIUS = 25;

19. What is the implicit parameter in the following? The explicit parameters?

father.replace(‘a’, ‘8’);

20. In a class definition, what keyword refers to the implicit parameter?

21. What does the keyword this mean, as in the following?

 return this.widthAndHeight;

22. What does the keyword this mean, as in the following?

 world.addBall(this);

23. What are two reasons why we use “this” to refer to the implicit argument (as in this.color)

when implementing a constructor or method?

24. What does a constructor do?

25. How do you invoke a constructor?

26. True or false: In Java, the constructors for a class always have the same name as the class.

27. Explain what space is allocated by the following (hint: space for 5 things are allocated):

Rectangle box = new Rectangle(5, 10, 20, 30);

28. What are the four visibility levels? For each, what restrictions does it impose?

(You can skip protected and package visibility for this exam; we’ll cover them later in the

course. That leaves two of the four visibility levels – they are …)

29. Generally, what visibility should fields have? Why?

30. Generally, what visibility should methods have? Why?

31. Generally, what visibility should constructors have? Why?

32. Generally, what visibility should classes have? Why?

33. If class B implements interface X, what does that imply?

34. If class B extends class Y, what does that imply?

Operators: +, == (and equals)

Static, instance, this keyword

Constructors

Visibility

Inplements an interface

Extends a class

3

35. What does the word cast mean?

36. What is the notation for doing a cast?

37. Why do you need a cast to assign a double value to an int variable, but not the other way

around? When you do such a cast, what happens to the fractional part of the double?

38. Give at least two reasons why UML class diagrams are useful.

39. What is the UML notation for a class? Give an example.

40. What is the UML notation for is-a (extends)?

41. What is the UML notation for is-a (implements)?

42. What is the UML notation for has-a?

43. What is the UML notation for depends-on?

44. What is encapsulation in object-oriented software? What two things are encapsulated inside

an object?

45. What is version control? Why is it useful?

46. What is developing by using documented stubs? Why is it useful?

47. What is test-first development? Why is it useful?

48. What is a unit test? Why is unit testing useful?

49. What is test coverage?

50. What is regression testing?

51. What annotation indicates that a method is a JUnit 4 test?

52. What does the @Before annotation in a JUnit test mean?

53. What is pair programming? Why is it useful?

54. What is iterative enhancement? Why is it useful?

55. What are magic numbers? Why do you want to avoid them? How do you avoid them?

56. What are parallel arrays? Why is their use generally a bad idea?

57. In Eclipse, what keystroke combination formats your code according to an accepted style?

58. Define each of the following key concepts in debugging: breakpoint, single stepping, and

inspecting variables.

cast

UML class diagrams

Software engineering

processes and principles.

Testing.

4

Closed-book topics, things you should be able to do:

1. Construct an object.

2. Use an object’s methods and/or fields.

3. Use assignment.

4. Read, understand and use the API (Application Programming Interface) of a class that you

have not seen before.

5. Explain the implications of object variables being references. Draw box-and-pointer

diagrams to illustrate assignment involving object variables.

6. Output to the console by using the System.out object. Do formatted output with printf.

7. Read from the console by using the Scanner class.

8. Use conditional statements, including those that use

comparison operators and/or boolean operators. The selection (ternary) operator.

9. Write for and while loops.

10. Write nested loops.

11. Process a loop using a sentinel value. Use break and/or continue in a loop.

12. Use an array of a generic type: declare, fill, iterate through (new style and old style), get/set

elements (by iterating and/or by directly accessing elements).

13. Use an ArrayList of a generic type: declare, fill, iterate through (new style and old style),

get/set elements (by iterating and/or by directly accessing elements).

14. Copy an array or ArrayList, by using a loop or by calling the appropriate method from the

System, Arrays and Collections classes.

15. Choose whether to use an array or an ArrayList.

16. Use the counting, summing, min/max and histogram looping patterns.

Use the loop-and-a-half pattern.

17. Use wrapper classes and autoboxing.

18. Write switch statements, including those that use an enum object.

19. Write and use enumerated types.

20. Implement a class, including implementing an interface and/or extending a class.

Determine what fields, constructors and methods are necessary to meet the specification, and

implement them. (For this exam, you need only a superficial understanding of how to extend

a class; we will cover that topic in more depth later in the course.)

21. Implement a UML class diagram. (For this exam, you need only a superficial understanding

of how to implement objects that interact with each other; will cover that topic in more depth

later in the course.)

22. Choose good unit tests and implement them in JUnit 4.

23. Read a stack trace and indicate: What statement caused the error? What was the last

statement executed in your code before the error occurred?

Constructing and using

objects. Assignment. API’s.

Console input and output

Conditionals and loops

Implementing classes

Arrays and ArrayList’s

5

On-the-computer topics: You should be able to do the following:

1. Choose and implement JUnit 4 tests for a class which is specified either in ordinary

language or by a UML class diagram.

2. Write Javadoc comments.

3. Implement a class, including:

a. Choosing and implementing the necessary fields

b. Choosing and implementing the necessary constructors

c. Choosing and implementing the necessary methods

4. Read and apply an API, even one that you have not seen before.

5. Implement loops and use arrays and ArrayLists.

6. Implement a program that uses the Swing API to display a window and draw/fill shapes

and/or text on it. Set the color and/or font used in such drawing.

7. Use the debugger to set a breakpoint; launch a program with the debugger; inspect a

variable; and single step over the current line of code.

8. Use Subclipse to checkout a project from your individual repository (or other repository as

specified); commit changes to that project; and get updates to the project from teammates.

9. Use good style. Control-Shift-F covers most (not all) style issues.

