
Summary 2 – Constructing and Using Objects

Constructing objects

Instances of a class are called objects and are constructed by

using the new operator, e.g.

Rectangle box = new Rectangle(5, 10, 20, 30);

Several steps are happening here:

1. Java reserves space for a Rectangle object.

 As much space as specified by the fields of the

Rectangle class

2. Rectangle’s constructor runs.

 It uses the data passed to it (here, the left/top

corner of the rectangle, its width and its height)

to initialize the fields of the Rectangle object.

 It does any other initialization required for

constructing a Rectangle.

3. Java reserves space for a variable box that can refer to

Rectangle objects.

4. box is set to refer to the object that was constructed.

Note:

 The name of the constructor is always the same as the

name of the class.

 You can have constructors with different signatures

(i.e., different types/number of parameters). For

example, Rectangle has a constructor that takes nothing

and constructs an empty rectangle at (0, 0).

Using objects

You use objects by using the

who-dot-what-with pattern

box.translate(6, -3)

Notes:

 The what can be a field (data associated with the object). A

method call always has parentheses (even if there are no

arguments); that’s how you tell it’s a method call.

 In Eclipse, after you type the dot, Eclipse shows you all the methods

and fields available to you!

 If who is a class name (instead of an instance of a class), then the

what method/field must be static – see the Summary on static.

 Example (from JavaEyes)
JavaEyesFrame frame = new JavaEyesFrame();

frame.setVisible(true);

 For further study:

o Big Java, chapter 2 Using Objects

o This summary’s author: David Mutchler

o See also the Summaries on:

 Variables, Types, Classes and Objects

who

(the object

being used)

dot

what

(the method, defined in the Rectangle class, that

is called – the statements in that method run and

then control returns to this point)

with

(the

arguments

that are sent

to the method

being called)

