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Chapter 8 — Designing Classes
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Chapter Goals

 To learn how to discover appropriate classes for a given problem
+ To understand the concepts of cohesion and coupling
+ To minimize the use of side effects

» To understand the scope rules for local variables and instance
variables
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Discovering Classes

» Aclass represents a single concept from the problem domain
* Name for a class should be a noun that describes concept

» Concepts from mathematics:

Point
Rectangle
Ellipse

» Concepts from real life:

BankAccount
CashRegister
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Cohesion

A class should represent a single concept

* The public interface of a class is cohesive if all of its features
are related to the concept that the class represents

* This class lacks cohesion:

public class CashRegister
{
public void enterPayment (int dollars, int quarters,
int dimes, int nickels, int pennies)

public static final double NICKEL VALUE =
public static final double DIME VALUE = 0.1;
public static final double QUARTER VALUE = 0.25;
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Cohesion

* CashRegister, as described above, involves two concepts:
cash register and coin

» Solution: Make two classes:

public class Coin

{
public Coin(double aValue, String aName) { ... }
public double getValue() { ... }

}

public class CashRegister

{

public void enterPayment (int coinCount, Coin coinType)

{ ..}
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Coupling

A class depends on another if it uses objects of that class

* CashRegister depends on Coin to determine the value of the
payment

* Coin does notdepend on CashRegister

» High coupling = Many class dependencies

* Minimize coupling to minimize the impact of interface changes
+ To visualize relationships draw class diagrams

« UML: Unified Modeling Language

* Notation for object-oriented analysis and design
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Figure 1
Dependency Relationship AT

Between the CashRegister
and Coin Classes
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High and Low Coupling Between Classes

Figure 2 High and Low Coupling Between Classes
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Self Check 8.3
Why is the CashRegister class from Chapter 4 not cohesive?

Answer: Some of its features deal with payments, others with
coin values.
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Self Check 8.4

Why does the coin class not depend on the cashregister class?

Answer: None of the coin operations require the cashregister
class.
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Immutable Classes

Accessor: Does not change the state of the implicit parameter:

double balance = account.getBalance ()

Mutator: Modifies the object on which it is invoked:

account.deposit (1000) ;

Immutable class: Has no mutator methods

Example: String:

String name = "John Q. Public";
String uppercased = name.toUpperCase|()
// name 1is not changed
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Self Check 8.6

Is the substring method of the St ring class an accessor or a
mutator?

Answer: Itis an accessor — calling substring doesn’t

modify the string on which the method is invoked. In fact, all
methods of the st ring class are accessors.
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Side Effects

» This method has the expected side effect of modifying the
implicit parameter and the explicit parameter other:

public void transfer (double amount, BankAccount other
{

balance = balance - amount;

other.balance = other.balance + amount;
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Side Effects

* Another example of a side effect is output:

public void printBalance() // Not recommended

{
System.out.println ("The balance is now $"
+ balance) ;

}
Bad idea: Message is in English, and relies on System.out

» Decouple input/output from the actual work of your classes

* Minimize side effects that go beyond modification of the implicit
parameter
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Call by Value and Call by Reference

» Call by value: Method parameters are copied into the
parameter variables when a method starts

 Call by reference: Methods can modify parameters
« Java has call by value

« A method can change state of object reference parameters, but
cannot replace an object reference with another

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Call by Value and Call by Reference

public class BankAccount

{

public void transfer (double amount, BankAccount

otherAccount)
{
balance balance - amount;
double newBalance = otherAccount.balance + amount;
otherAccount = new BankAccount (newBalance) ;

// Won't work
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Scope of Local Variables

» Scope of variable: Region of program in which the variable can
be accessed

» Scope of a local variable extends from its declaration to end of
the block that encloses it
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Scope of Local Variables

* Sometimes the same variable name is used in two methods:

public class RectangleTester
{
public static double area(Rectangle rect)
{
double r = rect.getWidth() * rect.getHeight();
return r;
}
public static void main (String[] args)
{
Rectangle r = new Rectangle(5, 10, 20, 30);
double a = area(r);
System.out.println(r);

}

* These variables are independent from each other; their scopes

icint Big Java by Cay Horstmann
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Scope of Local Variables

» Scope of a local variable cannot contain the definition of another
variable with the same name:

Rectangle r = new Rectangle(5, 10, 20, 30);

if (x >= 0)

{
double r = Math.sgrt (x);
// Error - can't declare another variable
// called r here
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Scope of Local Variables

» However, can have local variables with identical names if
scopes do not overlap:

if (x >= 0)
{
double r = Math.sgrt (x);

} // Scope of r ends here

else

{
Rectangle r = new Rectangle(5, 10, 20, 30);
// OK - it is legal to declare another r here
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Overlapping Scope

» Alocal variable can shadow a variable with the same name

* Local scope wins over class scope:

public class Coin

{

public double getExchangeValue (double exchangeRate)
{

double value; // Local variable
return value;
}

private String name;
private double value; // variable with the same name
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Overlapping Scope

+ Access shadowed variables by qualifying them with the this
reference:

value = this.value * exchangeRate;
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Overlapping Scope

» Generally, shadowing an instance variable is poor code —
error-prone, hard to read

» Exception: when implementing constructors or setter methods,
it can be awkward to come up with different names for instance
variables and parameters

« OK:

public Coin(double value, String name)
{

this.value = value;

this.name = name;
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Self Check 8.16

Consider the following program that uses two variables named r.

Is this legal?
public class RectangleTester
{
public static double area (Rectangle rect)
{
double r = rect.getWidth() * rect.getHeight();
return r;
}
public static void main (String[] args)
{
Rectangle r = new Rectangle(5, 10, 20, 30);
double a = areal(r);
System.out.println(r);

}

Answer: Yes. The scopes are disjoint. Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.
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Self Check 8.17

What is the scope of the balance variable of the BankAccount
class?

Answer: It starts at the beginning of the class and ends at the
end of the class.
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