
9/15/2010

1

Chapter 8 – Designing Classes

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• To learn how to discover appropriate classes for a given problem

• To understand the concepts of cohesion and coupling

• To minimize the use of side effects

• To understand the scope rules for local variables and instance

variables

Chapter Goals

9/15/2010

2

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• A class represents a single concept from the problem domain

• Name for a class should be a noun that describes concept

• Concepts from mathematics:

Point

Rectangle

Ellipse

• Concepts from real life:

BankAccount

CashRegister

Discovering Classes

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• A class should represent a single concept

• The public interface of a class is cohesive if all of its features

are related to the concept that the class represents

• This class lacks cohesion:

public class CashRegister

{

public void enterPayment(int dollars, int quarters,

int dimes, int nickels, int pennies)

...

public static final double NICKEL_VALUE = 0.05;

public static final double DIME_VALUE = 0.1;

public static final double QUARTER_VALUE = 0.25;

...

}

Cohesion

9/15/2010

3

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• CashRegister, as described above, involves two concepts:

cash register and coin

• Solution: Make two classes:

public class Coin

{

public Coin(double aValue, String aName) { ... }

public double getValue() { ... }

...

}

public class CashRegister

{

public void enterPayment(int coinCount, Coin coinType)

{ ... }

...

}

Cohesion

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• A class depends on another if it uses objects of that class

• CashRegister depends on Coin to determine the value of the

payment

• Coin does not depend on CashRegister

• High coupling = Many class dependencies

• Minimize coupling to minimize the impact of interface changes

• To visualize relationships draw class diagrams

• UML: Unified Modeling Language

• Notation for object-oriented analysis and design

Coupling

9/15/2010

4

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Dependency

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

High and Low Coupling Between Classes

9/15/2010

5

Why is the CashRegister class from Chapter 4 not cohesive?

Answer: Some of its features deal with payments, others with

coin values.

Self Check 8.3

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why does the Coin class not depend on the CashRegister class?

Answer: None of the Coin operations require the CashRegister

class.

Self Check 8.4

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/15/2010

6

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Accessor: Does not change the state of the implicit parameter:

double balance = account.getBalance();

• Mutator: Modifies the object on which it is invoked:

account.deposit(1000);

• Immutable class: Has no mutator methods

• Example: String:

String name = "John Q. Public";

String uppercased = name.toUpperCase();

// name is not changed

Immutable Classes

Is the substring method of the String class an accessor or a

mutator?

Answer: It is an accessor — calling substring doesn’t

modify the string on which the method is invoked. In fact, all
methods of the String class are accessors.

Self Check 8.6

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/15/2010

7

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• This method has the expected side effect of modifying the
implicit parameter and the explicit parameter other:

public void transfer(double amount, BankAccount other

{

balance = balance – amount;

other.balance = other.balance + amount;

}

Side Effects

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Another example of a side effect is output:

public void printBalance() // Not recommended

{

System.out.println("The balance is now $"

+ balance);

}

Bad idea: Message is in English, and relies on System.out

• Decouple input/output from the actual work of your classes

• Minimize side effects that go beyond modification of the implicit

parameter

Side Effects

9/15/2010

8

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Call by value: Method parameters are copied into the

parameter variables when a method starts

• Call by reference: Methods can modify parameters

• Java has call by value

• A method can change state of object reference parameters, but
cannot replace an object reference with another

Call by Value and Call by Reference

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

public class BankAccount

{

public void transfer(double amount, BankAccount

otherAccount)

{

balance = balance - amount;

double newBalance = otherAccount.balance + amount;

otherAccount = new BankAccount(newBalance);

// Won't work

}

}

Call by Value and Call by Reference

9/15/2010

9

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Scope of variable: Region of program in which the variable can

be accessed

• Scope of a local variable extends from its declaration to end of

the block that encloses it

Scope of Local Variables

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Sometimes the same variable name is used in two methods:

public class RectangleTester

{

public static double area(Rectangle rect)

{

double r = rect.getWidth() * rect.getHeight();

return r;

}

public static void main(String[] args)

{

Rectangle r = new Rectangle(5, 10, 20, 30);

double a = area(r);

System.out.println(r);

}

}

• These variables are independent from each other; their scopes

are disjoint

Scope of Local Variables

9/15/2010

10

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Scope of a local variable cannot contain the definition of another

variable with the same name:
Rectangle r = new Rectangle(5, 10, 20, 30);

if (x >= 0)

{

double r = Math.sqrt(x);

// Error - can't declare another variable

// called r here

...

}

Scope of Local Variables

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• However, can have local variables with identical names if

scopes do not overlap:

if (x >= 0)

{

double r = Math.sqrt(x);

...

} // Scope of r ends here

else

{

Rectangle r = new Rectangle(5, 10, 20, 30);

// OK - it is legal to declare another r here

...

}

Scope of Local Variables

9/15/2010

11

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• A local variable can shadow a variable with the same name

• Local scope wins over class scope:

public class Coin

{

...

public double getExchangeValue(double exchangeRate)

{

double value; // Local variable

...

return value;

}

private String name;

private double value; // variable with the same name

}

Overlapping Scope

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Access shadowed variables by qualifying them with the this

reference:

value = this.value * exchangeRate;

Overlapping Scope

9/15/2010

12

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Generally, shadowing an instance variable is poor code —

error-prone, hard to read

• Exception: when implementing constructors or setter methods,

it can be awkward to come up with different names for instance

variables and parameters

• OK:

public Coin(double value, String name)

{

this.value = value;

this.name = name;

}

Overlapping Scope

Consider the following program that uses two variables named r.

Is this legal?
public class RectangleTester

{

public static double area(Rectangle rect)

{

double r = rect.getWidth() * rect.getHeight();

return r;

}

public static void main(String[] args)

{

Rectangle r = new Rectangle(5, 10, 20, 30);

double a = area(r);

System.out.println(r);

}

}

Answer: Yes. The scopes are disjoint.

Self Check 8.16

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/15/2010

13

What is the scope of the balance variable of the BankAccount

class?

Answer: It starts at the beginning of the class and ends at the

end of the class.

Self Check 8.17

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

