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• To learn how to discover appropriate classes for a given problem

• To understand the concepts of cohesion and coupling 

• To minimize the use of side effects 

• To understand the scope rules for local variables and instance 

variables 

Chapter Goals
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• A class represents a single concept from the problem domain 

• Name for a class should be a noun that describes concept 

• Concepts from mathematics: 

Point

Rectangle 

Ellipse

• Concepts from real life:

BankAccount 

CashRegister

Discovering Classes
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• A class should represent a single concept 

• The public interface of a class is cohesive if all of its features 

are related to the concept that the class represents 

• This class lacks cohesion: 

public class CashRegister 

{

public void enterPayment(int dollars, int quarters, 

int dimes, int nickels, int pennies) 

... 

public static final double NICKEL_VALUE = 0.05; 

public static final double DIME_VALUE = 0.1; 

public static final double QUARTER_VALUE = 0.25; 

... 

}

Cohesion
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• CashRegister, as described above, involves two concepts: 

cash register and coin

• Solution: Make two classes:

public class Coin 

{

public Coin(double aValue, String aName) { ... } 

public double getValue() { ... } 

... 

}

public class CashRegister 

{

public void enterPayment(int coinCount, Coin coinType) 

{ ... } 

... 

}

Cohesion
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• A class depends on another if it uses objects of that class 

• CashRegister depends on Coin to determine the value of the 

payment 

• Coin does not depend on CashRegister

• High coupling = Many class dependencies 

• Minimize coupling to minimize the impact of interface changes 

• To visualize relationships draw class diagrams 

• UML: Unified Modeling Language

• Notation for object-oriented analysis and design 

Coupling
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Dependency
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High and Low Coupling Between Classes
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Why is the CashRegister class from Chapter 4 not cohesive? 

Answer: Some of its features deal with payments, others with 

coin values.

Self Check 8.3
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Why does the Coin class not depend on the CashRegister class? 

Answer: None of the Coin operations require the CashRegister

class.

Self Check 8.4
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• Accessor: Does not change the state of the implicit parameter: 

double balance = account.getBalance();

• Mutator: Modifies the object on which it is invoked: 

account.deposit(1000);

• Immutable class: Has no mutator methods 

• Example: String:

String name = "John Q. Public"; 

String uppercased = name.toUpperCase();

// name is not changed

Immutable Classes

Is the substring method of the String class an accessor or a 

mutator? 

Answer: It is an accessor — calling substring doesn’t 

modify the string on which the method is invoked. In fact, all 
methods of the String class are accessors.

Self Check 8.6
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• This method has the expected side effect of modifying the 
implicit parameter and the explicit parameter other:

public void transfer(double amount, BankAccount other

{

balance = balance – amount;

other.balance = other.balance + amount;

}

Side Effects
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• Another example of a side effect is output:

public void printBalance() // Not recommended 

{

System.out.println("The balance is now $"

+ balance);

}

Bad idea: Message is in English, and relies on System.out

• Decouple input/output from the actual work of your classes 

• Minimize side effects that go beyond modification of the implicit 

parameter 

Side Effects
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• Call by value: Method parameters are copied into the 

parameter variables when a method starts 

• Call by reference: Methods can modify parameters 

• Java has call by value 

• A method can change state of object reference parameters, but 
cannot replace an object reference with another

Call by Value and Call by Reference
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public class BankAccount 

{ 

public void transfer(double amount, BankAccount 

otherAccount) 

{

balance = balance - amount; 

double newBalance = otherAccount.balance + amount; 

otherAccount = new BankAccount(newBalance);

// Won't work 

} 

}

Call by Value and Call by Reference
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• Scope of variable: Region of program in which the variable can 

be accessed 

• Scope of a local variable extends from its declaration to end of 

the block that encloses it 

Scope of Local Variables
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• Sometimes the same variable name is used in two methods: 

public class RectangleTester 

{

public static double area(Rectangle rect) 

{

double r = rect.getWidth() * rect.getHeight(); 

return r; 

}

public static void main(String[] args) 

{

Rectangle r = new Rectangle(5, 10, 20, 30); 

double a = area(r); 

System.out.println(r); 

} 

}

• These variables are independent from each other; their scopes 

are disjoint 

Scope of Local Variables
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• Scope of a local variable cannot contain the definition of another 

variable with the same name:
Rectangle r = new Rectangle(5, 10, 20, 30); 

if (x >= 0) 

{

double r = Math.sqrt(x); 

// Error - can't declare another variable

// called r here 

... 

} 

Scope of Local Variables
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• However, can have local variables with identical names if 

scopes do not overlap:

if (x >= 0) 

{

double r = Math.sqrt(x); 

... 

} // Scope of r ends here 

else 

{

Rectangle r = new Rectangle(5, 10, 20, 30); 

// OK - it is legal to declare another r here 

... 

}

Scope of Local Variables
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• A local variable can shadow a variable with the same name 

• Local scope wins over class scope:

public class Coin 

{

... 

public double getExchangeValue(double exchangeRate) 

{

double value; // Local variable 

... 

return value; 

}

private String name; 

private double value; // variable with the same name 

} 

Overlapping Scope
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• Access shadowed variables by qualifying them with the this 

reference: 

value = this.value * exchangeRate;

Overlapping Scope
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• Generally, shadowing an instance variable is poor code —

error-prone, hard to read 

• Exception: when implementing constructors or setter methods, 

it can be awkward to come up with different names for instance 

variables and parameters 

• OK:

public Coin(double value, String name)

{

this.value = value;

this.name = name;

}

Overlapping Scope

Consider the following program that uses two variables named r. 

Is this legal?
public class RectangleTester

{

public static double area(Rectangle rect)

{

double r = rect.getWidth() * rect.getHeight();

return r;

}

public static void main(String[] args)

{

Rectangle r = new Rectangle(5, 10, 20, 30);

double a = area(r);

System.out.println(r);

}

}

Answer: Yes. The scopes are disjoint.

Self Check 8.16
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What is the scope of the balance variable of the BankAccount

class? 

Answer: It starts at the beginning of the class and ends at the 

end of the class.

Self Check 8.17
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