Compaiibly .p\u-h,‘ &7

S C.Df*z« ,\
Q‘RS‘TMAIEI»§

) AN Vg N

Chapter 8 — Designing Classes

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Chapter Goals

 To learn how to discover appropriate classes for a given problem
+ To understand the concepts of cohesion and coupling
+ To minimize the use of side effects

» To understand the scope rules for local variables and instance
variables

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/15/2010



9/15/2010

Discovering Classes

» Aclass represents a single concept from the problem domain
* Name for a class should be a noun that describes concept

» Concepts from mathematics:

Point
Rectangle
Ellipse

» Concepts from real life:

BankAccount
CashRegister
Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.
Cohesion

A class should represent a single concept

* The public interface of a class is cohesive if all of its features
are related to the concept that the class represents

* This class lacks cohesion:

public class CashRegister
{
public void enterPayment (int dollars, int quarters,
int dimes, int nickels, int pennies)

public static final double NICKEL VALUE =
public static final double DIME VALUE = 0.1;
public static final double QUARTER VALUE = 0.25;

(@)

’

0.0
1

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.



9/15/2010

Cohesion

* CashRegister, as described above, involves two concepts:
cash register and coin

» Solution: Make two classes:

public class Coin

{
public Coin(double aValue, String aName) { ... }
public double getValue() { ... }

}

public class CashRegister

{

public void enterPayment (int coinCount, Coin coinType)

{ ..}

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Coupling

A class depends on another if it uses objects of that class

* CashRegister depends on Coin to determine the value of the
payment

* Coin does notdepend on CashRegister

» High coupling = Many class dependencies

* Minimize coupling to minimize the impact of interface changes
+ To visualize relationships draw class diagrams

« UML: Unified Modeling Language

* Notation for object-oriented analysis and design

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.



Dependency
CashRegister
I
I
I
I
I
I
v
Figure 1
Dependency Relationship AT

Between the CashRegister
and Coin Classes

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

High and Low Coupling Between Classes

Figure 2 High and Low Coupling Between Classes

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/15/2010



9/15/2010

Self Check 8.3
Why is the CashRegister class from Chapter 4 not cohesive?

Answer: Some of its features deal with payments, others with
coin values.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 8.4

Why does the coin class not depend on the cashregister class?

Answer: None of the coin operations require the cashregister
class.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.



Immutable Classes

Accessor: Does not change the state of the implicit parameter:

double balance = account.getBalance ()

Mutator: Modifies the object on which it is invoked:

account.deposit (1000) ;

Immutable class: Has no mutator methods

Example: String:

String name = "John Q. Public";
String uppercased = name.toUpperCase|()
// name 1is not changed

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 8.6

Is the substring method of the St ring class an accessor or a
mutator?

Answer: Itis an accessor — calling substring doesn’t

modify the string on which the method is invoked. In fact, all
methods of the st ring class are accessors.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/15/2010



9/15/2010

Side Effects

» This method has the expected side effect of modifying the
implicit parameter and the explicit parameter other:

public void transfer (double amount, BankAccount other
{

balance = balance - amount;

other.balance = other.balance + amount;

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Side Effects

* Another example of a side effect is output:

public void printBalance() // Not recommended

{
System.out.println ("The balance is now $"
+ balance) ;

}
Bad idea: Message is in English, and relies on System.out

» Decouple input/output from the actual work of your classes

* Minimize side effects that go beyond modification of the implicit
parameter

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.



Call by Value and Call by Reference

» Call by value: Method parameters are copied into the
parameter variables when a method starts

 Call by reference: Methods can modify parameters
« Java has call by value

« A method can change state of object reference parameters, but
cannot replace an object reference with another

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Call by Value and Call by Reference

public class BankAccount

{

public void transfer (double amount, BankAccount

otherAccount)
{
balance balance - amount;
double newBalance = otherAccount.balance + amount;
otherAccount = new BankAccount (newBalance) ;

// Won't work

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/15/2010



9/15/2010

Scope of Local Variables

» Scope of variable: Region of program in which the variable can
be accessed

» Scope of a local variable extends from its declaration to end of
the block that encloses it

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Scope of Local Variables

* Sometimes the same variable name is used in two methods:

public class RectangleTester
{
public static double area(Rectangle rect)
{
double r = rect.getWidth() * rect.getHeight();
return r;
}
public static void main (String[] args)
{
Rectangle r = new Rectangle(5, 10, 20, 30);
double a = area(r);
System.out.println(r);

}

* These variables are independent from each other; their scopes

icint Big Java by Cay Horstmann
are d ISJOInt Copyright © 2009 by John Wiley & Sons. All rights reserved.



Scope of Local Variables

» Scope of a local variable cannot contain the definition of another
variable with the same name:

Rectangle r = new Rectangle(5, 10, 20, 30);

if (x >= 0)

{
double r = Math.sgrt (x);
// Error - can't declare another variable
// called r here

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Scope of Local Variables

» However, can have local variables with identical names if
scopes do not overlap:

if (x >= 0)
{
double r = Math.sgrt (x);

} // Scope of r ends here

else

{
Rectangle r = new Rectangle(5, 10, 20, 30);
// OK - it is legal to declare another r here

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/15/2010

10



9/15/2010

Overlapping Scope

» Alocal variable can shadow a variable with the same name

* Local scope wins over class scope:

public class Coin

{

public double getExchangeValue (double exchangeRate)
{

double value; // Local variable
return value;
}

private String name;
private double value; // variable with the same name

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Overlapping Scope

+ Access shadowed variables by qualifying them with the this
reference:

value = this.value * exchangeRate;

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

11



9/15/2010

Overlapping Scope

» Generally, shadowing an instance variable is poor code —
error-prone, hard to read

» Exception: when implementing constructors or setter methods,
it can be awkward to come up with different names for instance
variables and parameters

« OK:

public Coin(double value, String name)
{

this.value = value;

this.name = name;

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 8.16

Consider the following program that uses two variables named r.

Is this legal?
public class RectangleTester
{
public static double area (Rectangle rect)
{
double r = rect.getWidth() * rect.getHeight();
return r;
}
public static void main (String[] args)
{
Rectangle r = new Rectangle(5, 10, 20, 30);
double a = areal(r);
System.out.println(r);

}

Answer: Yes. The scopes are disjoint. Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

12



9/15/2010

Self Check 8.17

What is the scope of the balance variable of the BankAccount
class?

Answer: It starts at the beginning of the class and ends at the
end of the class.

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

13



