
11/3/2010

1

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

–

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• To understand race conditions and deadlocks

• To be able to avoid corruption of shared objects by using locks

and conditions

• To be able to use threads for programming animations

11/3/2010

2

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• When threads share a common object, they can conflict with

each other

• Sample program: multiple threads manipulate a bank account
Here is the run method of DepositRunnable:

public void run()

{

 try

 {

 for (int i = 1; i <= count; i++)

 {

 account.deposit(amount);

 Thread.sleep(DELAY);

 }

 }

 catch (InterruptedException exception)

 {

 }

}

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• The WithdrawRunnable class is similar

11/3/2010

3

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Create a BankAccount object

• Create two sets of threads:

• Each thread in the first set repeatedly deposits $100

• Each thread in the second set repeatedly withdraws $100

•deposit and withdraw have been modified to print

messages:

public void deposit(double amount)

{

 System.out.print("Depositing " + amount);

 double newBalance = balance + amount;

 System.out.println(", new balance is "

 + newBalance);

 balance = newBalance;

}

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• The result should be zero, but sometimes it is not

• Normally, the program output looks somewhat like this:

Depositing 100.0, new balance is 100.0

Withdrawing 100.0, new balance is 0.0

Depositing 100.0, new balance is 100.0

Depositing 100.0, new balance is 200.0

Withdrawing 100.0, new balance is 100.0

...

Withdrawing 100.0, new balance is 0.0

• But sometimes you may notice messed-up output, like this:

Depositing 100.0Withdrawing 100.0, new balance is

100.0, new balance is -100.0

11/3/2010

4

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

1. A deposit thread executes the lines:

System.out.print("Depositing " + amount);

double newBalance = balance + amount;

The balance variable is still 0, and the newBalance local

variable is 100

2. The deposit thread reaches the end of its time slice and a

withdraw thread gains control

3. The withdraw thread calls the withdraw method which

withdraws $100 from the balance variable; it is now -100

4. The withdraw thread goes to sleep

Continued

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

5. The deposit thread regains control and picks up where it left off;

it executes:

System.out.println(", new balance is " + newBalance);

balance = newBalance;

The balance is now 100 instead of 0 because the deposit

method used the OLD balance

11/3/2010

5

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Occurs if the effect of multiple threads on shared data depends

on the order in which they are scheduled

• It is possible for a thread to reach the end of its time slice in the

middle of a statement

• It may evaluate the right-hand side of an equation but not be

able to store the result until its next turn:

public void deposit(double amount)

{

 balance = balance + amount;

 System.out.print("Depositing " + amount

 + ", new balance is " + balance);

}

• Race condition can still occur:

balance = the right-hand-side value

11/3/2010

6

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Give a scenario in which a race condition causes the bank

balance to be -100 after one iteration of a deposit thread and a

withdraw thread.

Answer: There are many possible scenarios. Here is one:

• The first thread loses control after the first print statement.

• The second thread loses control just before the assignment balance

= newBalance.

• The first thread completes the deposit method.

• The second thread completes the withdraw method.

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose two threads simultaneously insert objects into a linked

list. Using the implementation in Chapter 15, explain how the list

can be damaged in the process.

Answer: One thread calls addFirst and is preempted just

before executing the assignment first = newLink. Then

the next thread calls addFirst, using the old value of first.

Then the first thread completes the process, setting first to

its new link. As a result, the links are not in sequence.

11/3/2010

7

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• To solve problems such as the one just seen, use a lock object

• Lock object: used to control threads that manipulate shared

resources

• In Java: Lock interface and several classes that implement it

• ReentrantLock: most commonly used lock class

• Locks are a feature of Java version 5.0

• Earlier versions of Java have a lower-level facility for thread

synchronization

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Typically, a lock object is added to a class whose methods

access shared resources, like this:

public class BankAccount

{

 private Lock balanceChangeLock;

 public BankAccount()

 {

 balanceChangeLock = new ReentrantLock();

 ...

 }

 ...

}

11/3/2010

8

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Code that manipulates shared resource is surrounded by calls to
lock and unlock:

balanceChangeLock.lock();

Manipulate the shared resource
balanceChangeLock.unlock();

• If code between calls to lock and unlock throws an exception,

call to unlock never happens

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• To overcome this problem, place call to unlock into a finally

clause:

public void deposit(double amount)

{

 balanceChangeLock.lock();

 try

 {

 System.out.print("Depositing " + amount);

 double newBalance = balance + amount;

 System.out.println(", new balance is " +

 newBalance); balance = newBalance;

 }

 finally

 {

 balanceChangeLock.unlock();

 }

}

11/3/2010

9

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• When a thread calls lock, it owns the lock until it calls unlock

• A thread that calls lock while another thread owns the lock is

temporarily deactivated

• Thread scheduler periodically reactivates thread so it can try to

acquire the lock

• Eventually, waiting thread can acquire the lock

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

11/3/2010

10

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

If you construct two BankAccount objects, how many lock

objects are created?

Answer: Two, one for each bank account object. Each lock

protects a separate balance variable.

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

What happens if we omit the call unlock at the end of the

deposit method?

Answer: When a thread calls deposit, it continues to own

the lock, and any other thread trying to deposit or withdraw

money in the same bank account is blocked forever.

11/3/2010

11

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• A deadlock occurs if no thread can proceed because each

thread is waiting for another to do some work first

•BankAccount example:

public void withdraw(double amount)

{

 balanceChangeLock.lock();

 try

 {

 while (balance < amount)

 Wait for the balance to grow

 ...

 }

 finally

 {

 balanceChangeLock.unlock();

 }

}

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• How can we wait for the balance to grow?

• We can’t simply call sleep inside withdraw method;

thread will block all other threads that want to use
balanceChangeLock

• In particular, no other thread can successfully execute deposit

• Other threads will call deposit, but will be blocked until

withdraw exits

• But withdraw doesn’t exit until it has funds available

• DEADLOCK

11/3/2010

12

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• To overcome problem, use a condition object

• Condition objects allow a thread to temporarily release a lock,

and to regain the lock at a later time

• Each condition object belongs to a specific lock object

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• You obtain a condition object with newCondition method of

Lock interface:

public class BankAccount

{

 public BankAccount()

 {

 balanceChangeLock = new ReentrantLock();

 sufficientFundsCondition =

 balanceChangeLock.newCondition();

 ...

 }

 ...

 private Lock balanceChangeLock;

 private Condition sufficientFundsCondition;

}

11/3/2010

13

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• It is customary to give the condition object a name that

describes condition to test

• You need to implement an appropriate test

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• As long as test is not fulfilled, call await on the condition object:

public void withdraw(double amount)

{

 balanceChangeLock.lock();

 try

 {

 while (balance < amount)

 sufficientFundsCondition.await();

 ...

 }

 finally

 {

 balanceChangeLock.unlock();

 }

}

11/3/2010

14

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Calling await

• Makes current thread wait

• Allows another thread to acquire the lock object

• To unblock, another thread must execute signalAll on the

same condition object :

sufficientFundsCondition.signalAll();

•signalAll unblocks all threads waiting on the condition

•signal: randomly picks just one thread waiting on the object

and unblocks it

•signal can be more efficient, but you need to know that every

waiting thread can proceed

• Recommendation: always call signalAll

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

What is the essential difference between calling sleep and

await?

Answer: A sleeping thread is reactivated when the sleep delay

has passed. A waiting thread is only reactivated if another
thread has called signalAll or signal.

11/3/2010

15

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why is the sufficientFundsCondition object an instance

variable of the BankAccount class and not a local variable of the

withdraw and deposit methods?

Answer: The calls to await and signal/signalAll must

be made to the same object.

