Analysis of Algorithms

Functions in Increasing Order of Growth Rate

- Constant c
- Logarithmic log N
- Log-squared log² N
- Linear N
- N log N N log N
- Quadratic N²
- Cubic N³
- Exponential 2^N

Pigeonholing

- Realistically, we have eight choices
- Pretty good odds

Algorithms vs. Programs

- We analyze algorithms rather than programs
- Ignores poor implementation
- Focuses on the big picture

What to Analyze?

- Determine statements that contribute to the major work being done by the algorithm.
- Determine the number of times they get executed.

Worst, best, average case

- We <u>ALWAYS</u> perform an analysis for the general case of n.
- *Best case*: For input of size n, what is the **best** possible running time.
- *Worst case*: For input of size n, what is the **worst** possible running time.
- Average case: For input of size n, what is the average running time.

Linear Search

```
public static int linearSearch(int[]a, int e){
   for (int i = 0; i < a.length; i++){
      if (a[i] == e) return i;
   }
   return -1;
}</pre>
```

```
Copyright : Michael Wollowski
```

1 7

Best Case Analysis of Linear Search

- Size of array is of length *n*.
- In **best** case, the element we are looking for is in the first position of the array.
- In this case, we have one comparison.
- O(1)

Worst Case Analysis of Linear Search

- Size of array is of length *n*.
- In worst case, the element we are looking for is in the last position of the array or not located in the array
- In these cases, we have to look at all elements of the array, giving n comparison.
- O(n)

Average Case Analysis of Linear Search

- Chances of looking for 1st element in array: 1/n
- Same for all other elements
- Number of elements to compare:
 - 1st element: 1
 - 2nd element: 2
 - nth element: n

Copyright : Michael Wollowski

Average Case Analysis of Linear Search

- Sum of all cases: 1/n*1 + 1/n*2 + ... + 1/n*n
- Factor out 1/n: 1/n*(1 + 2 + ... + n)
- Change notation: $1/n * \sum_{i=0}^{n} i$
- By induction, you can show that: $\sum_{i=0}^{n} = n^{*}(n+1)/2$
- Dividing by n: (n+1)/2
- O(n)

Copyright : Michael Wollowski

EZ Analysis

- Implement algorithm
- Count the number of times key statements get executed
- Have the computer print the best, worst and average cases.