10/20/2010

Analysis of Algorithms

Functions in Increasing Order of
Growth Rate

Constant C
Logarithmic log N
Log-squared log? N
Linear N

N log N N log N
Quadratic N?
Cubic N3

Exponential 2N

10/20/2010

Pigeonholing

» Realistically, we have eight choices
* Pretty good odds

Algorithms vs. Programs

* We analyze algorithms rather than programs
* Ignores poor implementation
* Focuses on the big picture

10/20/2010

What to Analyze?

Determine statements that contribute to the
major work being done by the algorithm.

Determine the number of times they get
executed.

Worst, best, average case

We ALWAYS perform an analysis for the
general case of n.

Best case: For input of size n, what is the best
possible running time.

Worst case: For input of size n, what is the
worst possible running time.

Average case: For input of size n, what is the
average running time.

Linear Search

public static int linearSearch(int[]a, int e){
for (int 1 = 0; i < a.length; i++) {
if (a[i] == e) return i;
}

return -1;

Copyright : Michael Wollowski

Best Case Analysis of Linear Search

Size of array is of length n.

In best case, the element we are looking for is
in the first position of the array.

In this case, we have one comparison.
0(1)

Copyright : Michael Wollowski

10/20/2010

10/20/2010

Worst Case Analysis of Linear Search

 Size of array is of length n.

* In worst case, the element we are looking for
is in the last position of the array or not
located in the array

* In these cases, we have to look at all elements
of the array, giving n comparison.

* O(n)

Copyright : Michael Wollowski

Average Case Analysis of Linear Search
» Chances of looking for 1t element in array:
1/n
« Same for all other elements

* Number of elements to compare:
— 1stelement: 1
— 2" element: 2

—nth element: n

Copyright : Michael Wollowski

10/20/2010

Average Case Analysis of Linear Search

Sum of all cases: 1/n*1 +1/n*2 + ...+ 1/n*n
Factorout 1/n: 1/n*(1+2+..+n)
Change notation: 1/n *Z?: 0
By induction, you can show that:

Z’;: = n*(n+1)/2
Dividing by n: (n+1)/2
O(n)

Copyright : Michael Wollowski

EZ Analysis

* Implement algorithm

e Count the number of times key statements get
executed

* Have the computer print the best, worst and
average cases.

