
10/20/2010

1

Analysis of Algorithms

Functions in Increasing Order of
Growth Rate

• Constant c

• Logarithmic log N

• Log-squared log2 N

• Linear N

• N log N N log N

• Quadratic N2

• Cubic N3

• Exponential 2N

10/20/2010

2

Pigeonholing

• Realistically, we have eight choices

• Pretty good odds

Algorithms vs. Programs

• We analyze algorithms rather than programs

• Ignores poor implementation

• Focuses on the big picture

10/20/2010

3

What to Analyze?

• Determine statements that contribute to the
major work being done by the algorithm.

• Determine the number of times they get
executed.

Worst, best, average case

• We ALWAYS perform an analysis for the
general case of n.

• Best case: For input of size n, what is the best
possible running time.

• Worst case: For input of size n, what is the
worst possible running time.

• Average case: For input of size n, what is the
average running time.

10/20/2010

4

Linear Search

public static int linearSearch(int[]a, int e){

 for (int i = 0; i < a.length; i++){

 if (a[i] == e) return i;

 }

 return -1;

}

1-7

Copyright : Michael Wollowski

Best Case Analysis of Linear Search

• Size of array is of length n.

• In best case, the element we are looking for is
in the first position of the array.

• In this case, we have one comparison.

• O(1)

1-8

Copyright : Michael Wollowski

10/20/2010

5

Worst Case Analysis of Linear Search

• Size of array is of length n.

• In worst case, the element we are looking for
is in the last position of the array or not
located in the array

• In these cases, we have to look at all elements
of the array, giving n comparison.

• O(n)

1-9

Copyright : Michael Wollowski

Average Case Analysis of Linear Search

• Chances of looking for 1st element in array:
1/n

• Same for all other elements

• Number of elements to compare:

– 1st element: 1

– 2nd element: 2

– nth element: n

Copyright : Michael Wollowski

10/20/2010

6

• Sum of all cases: 1/n*1 + 1/n*2 + … + 1/n*n

• Factor out 1/n: 1/n*(1 + 2 + … + n)

• Change notation: 1/n *

• By induction, you can show that:
 = n*(n+1)/2

• Dividing by n: (n+1)/2

• O(n)

Average Case Analysis of Linear Search

Copyright : Michael Wollowski

EZ Analysis

• Implement algorithm

• Count the number of times key statements get
executed

• Have the computer print the best, worst and
average cases.

