
Two cool ideas:
Anonymous classes

Polymorphism

Anonymous classes – motivation

• You probably have many buttons and/or menu
items in your VectorGraphics project

• Three approaches for responding to the
events from selecting those buttons / menu
items
1. Classic: Each button is a class that implements

ActionListener

2. Least code: Panel responds to ALL buttons

3. Anonymous class for each button

Anonymous classes – motivation

1. Classic: Each button (likewise for menu-item) is a
class that implements ActionListener

• Obeys Quality Tip: Buttons should respond to themselves

public class XXXButton extends JButton

implements ActionListener {

public XXXButton(XXPanel panel) {

// store panel in field

}

public void actionPerformed(ActionEvent event) {

// Ask panel to ...

}

Anonymous classes – motivation
2. Panel responds to ALL the buttons and menu-items

• Not very OO, but easy to code

public class XXXPanel extends JPanel

implements ActionListener {

public void actionPerformed(ActionEvent event) {

JButton button = (JButton) (event.getSource());

if (button.getText().equals(“Make rectangle”) {

// construct and draw a rectangle

} else if (...) {

// etc

} // etc

}

}

Wherever buttons are constructed:

button.addActionListener(panel);

Or this if this code is
in the Panel class

Anonymous classes

3. Button responds via an anonymous class

• Responding code is physically close to constructing code

• Code in red below is the anonymous class

Wherever buttons are constructed:

button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent event) {

// Ask panel to ...

}

});

The anonymous class is an inner class and hence can refer to:
• Any field of the enclosing class
• Any local variable in the enclosing method if the variable is final.

Polymorphism

• You probably have a list of objects that paintComponent draws:
ArrayList<MyShape> objectsToDraw;

• Suppose MyShape is an interface that specifies a draw method that takes
a Graphics object. Then paintComponent(Graphics g) can be:

for (MyShape objectToDraw : objectsToDraw) {

objectToDraw.draw(g);

}

• At run time, each objectToDraw morphs into the particular type it actually
is, and uses its actual draw method.

• Bottom-line: for any statement like
x.foo(…);

the actual type of x (not the declared type) is what determines which foo
function to run

