
Review: Cohesion and Coupling, Mutable,
Inheritance

Screen Layouts

Software methodologies – Extreme ProgrammingSoftware methodologies – Extreme Programming

Object-Oriented Design – CRC Cards

- UML class diagrams

Analysis

Design

Implementation
Software

Implementation

Testing

Deployment

Maintenance

Software
Development

� Standardized approaches intended to:
◦ Reduce costs

◦ Increase predictability of results

� Examples:� Examples:
◦ Waterfall model

◦ Spiral model

◦ “Rational Unified Process”

� Do each stage to completion
� Then do the next stage

Analysis

Design

Pipe dream model?

Implementation

Testing

Deployment

� Repeat phases in a cycle

� Produce a prototype at end of each cycle

� Get early feedback, incorporate changes

� Schedule overruns
� Scope creep

PrototypePrototype

Deployment

� Like the spiral model with veryveryveryvery short cycles

� Pioneered by Kent Beck

One of several “agile” methodologies, focused � One of several “agile” methodologies, focused
on building high quality software quickly

� Rather than focus on rigid process, XP
espouses 12 key practices…

� Realistic planning

� Small releases

� Shared metaphors

� Pair programmingPair programmingPair programmingPair programming

� Collective ownership

� Continuous integration

� Simplicity

� TestingTestingTestingTesting

� RefactoringRefactoringRefactoringRefactoring

� 40-hour week

� On-site customer

� Coding standardsCoding standardsCoding standardsCoding standards

When you see
opportunity to make
code better, do it

Use descriptive
names Q1

It starts with good classes…

� Often come from nouns in the problem
description

� May…
◦ Represent single concepts

� Circle, Investment� Circle, Investment

◦ Be abstractions of real-life entities

� BankAccount, TicTacToeBoard

◦ Be actors

� Scanner, CircleViewer

◦ Be utilities

� Math

Q2Q2Q2Q2

� Can’t tell what it does from its name

◦ PayCheckProgram

� Turning a single action into a class

◦ ComputePaycheck◦ ComputePaycheck

� Name isn’t a noun
◦ Interpolate, Spend

Q3Q3Q3Q3

� Cohesion

� Coupling

� A class should represent a single concept

� Public methods and constants should be
cohesive

� Which is more cohesive?

CashRegister

double NICKEL_VALUE
double DIME_VALUE

double QUARTER_VALUE

void add(int nickels, int
dimes, int quarters)

…

CashRegister

void add(ArrayList<Coin> coins)
…

Coin

double getValue()
Q4Q4Q4Q4

� When one classes requires another class to
do its job, the first class depends on the
second

� Shown on UML

CashRegister

void add(ArrayList<Coin> coins)� Shown on UML
diagrams as:
◦ dashed line

◦ with open arrowhead

void add(ArrayList<Coin> coins)
…

Coin

double getValue()
Q5Q5Q5Q5

� Lots of dependencies == high coupling

� Few dependencies == low coupling

� Which is better? Why?

Q6Q6Q6Q6

� High cohesion

� Low coupling

Immutable where practical, document where not� Immutable where practical, document where not

� Inheritance for code reuse

� Interfaces to allow others to interact with your
code

A practical technique

� We won’t use full-scale, formal
methodologies
◦ Those are in later SE courses

� We will practice a common object-oriented
design technique using CRC CardsCRC CardsCRC CardsCRC Cardsdesign technique using CRC CardsCRC CardsCRC CardsCRC Cards

� Like any design technique,
the key to success is practicethe key to success is practicethe key to success is practicethe key to success is practice

1.1.1.1. Discover classes Discover classes Discover classes Discover classes based on
requirements

2.2.2.2. Determine responsibilities Determine responsibilities Determine responsibilities Determine responsibilities of 2.2.2.2. Determine responsibilities Determine responsibilities Determine responsibilities Determine responsibilities of
each class

3.3.3.3. Describe relationships Describe relationships Describe relationships Describe relationships between
classes

Q2

� Brainstorm a list of possible classes
◦ Anything that might work

◦ No squashing

� Prompts:
◦ Look for nounsnounsnounsnouns

Tired of hearing this yet?

◦ Look for nounsnounsnounsnouns

◦ Multiple objects are often created from each class
� so look for plural conceptsplural conceptsplural conceptsplural concepts

◦ Consider how much detail a concept requires:

� A lot? Probably a class

� Not much? Perhaps a primitive type

� Don’t expect to find them all � add as needed

� Look for verbsverbsverbsverbs in the requirements to identify
responsibilitiesresponsibilitiesresponsibilitiesresponsibilities of your system

� Which class handles the responsibility?

� Can use CRC Cards CRC Cards CRC Cards CRC Cards to discover this:

◦ CCCClasseslasseslasseslasses

◦ RRRResponsibilitiesesponsibilitiesesponsibilitiesesponsibilities

◦ CCCCollaboratorsollaboratorsollaboratorsollaborators

� Use one index card per class

Class name

CollaboratorsResponsibilities

Q3

1. Pick a responsibility of the program

2. Pick a class to carry out that responsibility
◦ Add that responsibility to the class’s card

3. Can that class carry out the responsibility by
itself?itself?
◦ Yes � Return to step 1

◦ No �

� Decide which classes should help

� List them as collaborators on the first card

� Add additional responsibilities to the collaborators’
cards

� Spread the cards out Spread the cards out Spread the cards out Spread the cards out on a table
◦ Or sticky notes on a whiteboard instead of cards

� Use a “token” Use a “token” Use a “token” Use a “token” to keep your place
◦ A quarter or a magnet

� Focus on highFocus on highFocus on highFocus on high----level responsibilitieslevel responsibilitieslevel responsibilitieslevel responsibilities� Focus on highFocus on highFocus on highFocus on high----level responsibilitieslevel responsibilitieslevel responsibilitieslevel responsibilities
◦ Some say < 3 per card

� Keep it informalKeep it informalKeep it informalKeep it informal
◦ Rewrite cards if they get to sloppy

◦ Tear up mistakes

◦ Shuffle cards around to keep “friends” together

� Classes usually are related to their
collaborators

� Draw a UML class diagram showing how

� Common relationships:
◦ InheritanceInheritanceInheritanceInheritance: only when subclass is ais ais ais a special case◦ InheritanceInheritanceInheritanceInheritance: only when subclass is ais ais ais a special case

◦ AggregationAggregationAggregationAggregation: when one class has ahas ahas ahas a fieldfieldfieldfield that
references another class

◦ DependencyDependencyDependencyDependency: like aggregation but transient, usually
for method parameters, “has a” temporarily“has a” temporarily“has a” temporarily“has a” temporarily

◦ AssociationAssociationAssociationAssociation: any other relationship, can label the
arrow, e.g., constructsconstructsconstructsconstructs

NEW!

Q4

