
Non-text Files, reading and Writing Objects
Network IO

Work on Spellchecker Project

Everything for the Mini-project is due at the
beginning of your class time on Day 30. No
late days may be used for this one.
There will be time in class to work with your
team every day. Do not miss it!
Writing up and turning in written problems is
no longer required. But you should still do
them at some point.
The Digital Resource Center is looking for a
student to do ANGEL support for faculty.
◦ See Nancy Bauer in the DRC if you're interested

I will provide some class time on Thursday for
filling out the evaluation forms
I recommend that you wait until then to do
them, so you'll be able to comment on the
full course, including your project experience.

Day 30 in class
Informal and informational
What does your program do? How does it do it
Data Structures and algorithms.
Intended audience: Your classmates
◦ Already know what the project is.
◦ Already know Java
◦ Already know the data structures we have studied.
No more than 7 minutes, including Q&A time.
Just before your presentation, we will randomly
choose which of your team members will present,
so everyone should be prepared to do it.
Commit an outline of your presentation to your
team repository by 5:00 PM on Tuesday.

As always,
you can
find my
up-to-
date
schedule
online.

Spellchecker
Sorting
Input and output
Anything else

THE DEPARTMENT OF COMPUTER SCIENCE
& SOFTWARE ENGINEERING

INVITES YOU TO THE

FACULTY CANDIDATE TALK

JOHN GEORGAS
UNIVERSITY OF CALIFORNIA, IRVINE

SUPPORTING ARCHITECTURE- AND POLICY-BASED
SELF-ADAPTIVE SOFTWARE SYSTEMS

MONDAY FEBRUARY 11, 2008

4:30 P.M. O-269

Please
stay
afterward
to talk
informally
with John.

Random access files and serialization
Networking intro
Work on Spellchecker

public static void main(String[] args) throws IOException{
int [] nums = new int [20];
for (int i=0; i<nums.length; i++) {

nums[i] = (int)(Math.random()*Integer.MAX_VALUE);
}
PrintWriter pw = new PrintWriter(

new FileOutputStream("text.txt"));
DataOutputStream os = new DataOutputStream(

new FileOutputStream("bin.bin"));

for (int n : nums) {
pw.print(n + " ");
os.writeInt(n);

}
pw.println();
pw.close();
os.close();

} >ls -l bin.bin text.txt
a----- 80 8-Feb-108 13:50 bin.bin
a----- 211 8-Feb-108 13:50 text.txt
UNIX output format is more
compact than MSDOS.

What is the difference between the
effects of these two statements?

import java.io.*;
public class RandomAccess {
public static void main(String [] args) {
try {
RandomAccessFile raf = new RandomAccessFile("random.dat", "rw");
for (int i=0; i<10; i++)
raf.writeInt(i);

raf.seek(20);
int number = raf.readInt();
System.out.println("The number starting at byte 20 is " + number);
raf.seek(4);
number = raf.readInt();
System.out.println("The number starting at byte 4 is " + number);
raf.seek(5);
number = raf.readInt();
System.out.println("The number starting at byte 5 is " + number);

raf.close();
}catch (IOException e) {

e.printStackTrace();
}
}

}

Streams provide easy sequential access to a file, but sometimes you want to have
random access; for example a database program certainly needs to be able to go
directly to a particular location in the file.

This example is adapted from Art Gittleman,
Advanced Java:Internet Programming, page 16

writeInt ?

Note that we are reading and writing numbers in their
internal (binary) representation, not in their text
(human-readable) representation.

We'd like to be able to write objects to a file,
then read them back in later.
Java (transparently to the user) writes type
information along with the data.
Reading the object in will recover its type
information.

Objects can contain references to other
objects.
◦ Writing out the actual reference (a memory address)

would be meaningless when we try to read it back
in.

Several objects might have references to the
same object.
◦ We do not want to write out several copies of that

object to the file.
◦ If we did, we might read them back in as if they

were different objects.

The objects that we write/read must
implement the Serializable interface (which
has no methods).
Objects are written to an
ObjectOutputStream.
An example should help you see how it
works.

class Person implements Serializable{
private String name;
public Person (String name) {

this.name=name; }
}

class Account implements Serializable {
private Person holder;
private double balance;
public Account(Person p, double amount) {
holder=p;
balance=amount;

}
}

class SavingsAccount extends Account implements Serializable {
private double rate;
public SavingsAccount(Person p, double amount, double r) {
super(p,amount);
rate=r;

}

Note that an Account
HAS-A Person

In addition to writeObject(), the
ObjectOutputStream class provides methods for
writing primitives, such as writeDouble() and
writeInt(). writeObject() calls these when needed.

public static void main(String [] args) {
try {
Person fred = new Person("Fred");
Account general = new Account(fred, 110.0);
Account savings = new SavingsAccount(fred, 500.0, 6.0);

ObjectOutputStream oos = new ObjectOutputStream(
new FileOutputStream("Objects.dat"));

oos.writeObject(general);
oos.writeObject(savings);
oos.close();

We must read the objects in the same order
as they were written.
Both objects that are read are assigned to
variables of the type Account, even though
one should have been written out as a
SavingsAccount.
We will check to make sure it was read
correctly.

ObjectInputStream ois =
new ObjectInputStream(

new FileInputStream("Objects.dat"));
Account aGeneral = (Account)ois.readObject();
Account aSavings = (Account)ois.readObject();

if (aGeneral instanceof SavingsAccount)
System.out.println("aGeneral is a SavingsAccount");

else if (aGeneral instanceof Account)
System.out.println("aGeneral is an Account");

if (aSavings instanceof SavingsAccount)
System.out.println("aSavings is a SavingsAccount");

else if (aSavings instanceof Account)
System.out.println("aSavings is an Account");

if (aGeneral.holder == aSavings.holder)
System.out.println("The account holder, fred, is shared");

else
System.out.println("Account holder, fred, was duplicated");

ois.close();
}catch (IOException ioe) {

ioe.printStackTrace();
}catch (ClassNotFoundException cnfe) {

cnfe.printStackTrace();
} Output:

aGeneral is an Account
aSavings is a SavingsAccount
The account holder, fred, is shared

Network programming in java

Let's start with what you know.
What are some terms, concepts, and issues
associated with network communication and
network programming?

Most network programs involve a server
program and one or more client programs.
When a server is started, it is associated
with an Internet port number. Port
numbers below 1024 are generally reserved
for system services; user-written services
use higher port numbers.

Programs typically connect via a socket, and
communicate using an agreed-upon
protocol.
If you randomly choose a server program
and a client program, they probably can't
communicate because they use different
protocols.
We can use a standard protocol (such as
TELNET, HTTP or FTP) or make up our own.

A socket is the standard intermediate-level
model of a client-server connection
The client and server each provide a socket,
which is "half of the connection"
◦ Examples: AC connection socket, DC connection

socket, Monitor connection socket
After being established on a port, the server
creates its end of the socket and waits for a
client to connect (via accept command)
Many APIs, including JDK, provide higher-
level tools, such as URLConnection objects

Note: This slide and several subsequent
slides, along with the corresponding
code, were adapted from Big Java by
Cay Horstmann

Ethernet address (MAC address)
◦ 12 hexadecimal numbers
◦ used mainly for assigning IP address. One of mine

is 00-1B-77-47-DE-DF
IP address
◦ 4 numbers (in range 0-255) separated by periods
◦ As I am writing this, mine (via VPN connection) is

137.112.248.114
All RHIT addresses begin with 137.112

Domain-name address
◦ addiator.rose-hulman.edu
◦ www.rose-hulman.edu
◦ A name-server (DNS) translates from domain-name

addresses to IP addresses
◦ Usually the name server's work is transparent to the

user

URL stands for Uniform Resource Locator
HTTP://www.rose-hulman.edu:80/class/csse
HTTP: HyperText Transfer Protocol. Other
protocols are possible, such as FTP, MAILTO,
FILE.
www.rose-hulman.edu The address (can also be
specified as an IP address: 137.112.255.80).
80 The internet port number. A server
establishes port numbers for its network services
so that clients can locate them.
80 is the default for HTTP
21 for FTP
class/csse Directory and/or file information.
Many browsers attempt to fill in missing parts.

	CSSE 220 Day 28
	CSSE 220 Day 28
	Course Evaluations
	Project presentation/demonstration�
	My schedule this week
	Questions from students
	Slide Number 7
	Today's Agenda
	Text Files vs Binary files
	Random Access Files
	Reading and WritingObjects
	Issues with reading/writing Objects
	Solution: Object Serialization
	Example: 1. Serializable classes
	Example: 2. Definitions and Output
	Example: 3. Input Serialized Objects
	Example: 4. Check the Objects
	What if the Input/Output is from/to a Network Server?
	Network programming
	Network programming
	Network programming
	Socket
	Communicating over a socket
	Host Addresses
	Anatomy of an HTTP URL
	The OSI Reference Model

