CSSE 220 Day 23 Exam Review Minesweeper mine placement Hardy Efficiency

CSSE 220 Day 23

- Reminder: Exam #2 is this Thursday
 - In order to reduce time pressure, you optionally may take the non-programming part 7:10-7:50 AM.
 - You may bring one piece of paper with notes for the first part.
 - Same resources as last time for the programming part.
- Markov Milestone 2 due Friday 5 PM
- Begin thinking about Spell-check program
- You can still do the Mini-project partner surveys this morning
- Blood Drive today and tomorrow Union

Today's Agenda

- Answers to your questions in preparation for the exam
- Some (not-so stupid) Minesweeper tricks.
- A look at my Hardy solution
- Empirical analysis of an algorithm.
- More on Linked Lists?

Answers to your questions

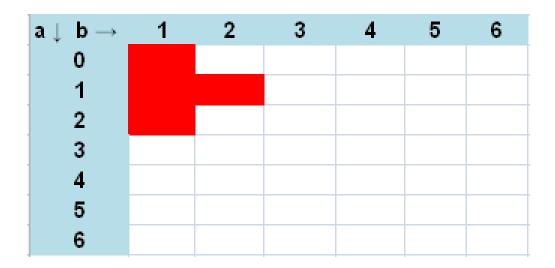
- Abstract Data Types and Data Structures
- Collections and Lists
- Markov
- Exam
- Material you have read
- Anything else

Minesweeper tricks

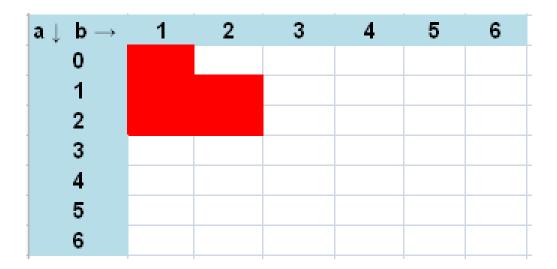
- Picking random locations for mines
- Counting neighboring mines

• total = $a^3 + b^3$.

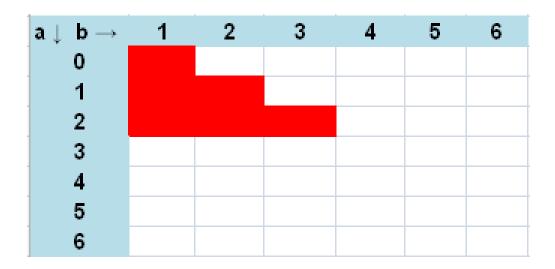
$a \downarrow b \rightarrow$	1	2	3	4	5	6
0						
1						
2						
3						
4						
5						
6						

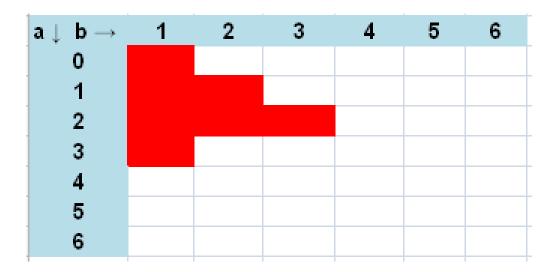

• total = $a^3 + b^3$.

$a \downarrow b \to$	1	2	3	4	5	6
0						
1						
2						
3						
4						
5						
6						


• total = $a^3 + b^3$.

$a \downarrow b \rightarrow$	1	2	3	4	5	6
0						
1						
2						
3						
4						
5						
6						


• total = $a^3 + b^3$.

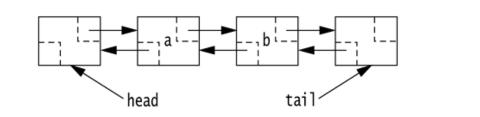

• total = $a^3 + b^3$.

• total = $a^3 + b^3$.

• total = $a^3 + b^3$.

Hardy Algorithm basic idea

- Go through the values of a and b in the order just described
- When we calculate each total
 - Look in table if we have seen that total before
 - If not, record its triple: (a, b, total) in table.
 - If so, record in the duplicates table
- When we get N items in the duplicates table
 - They may not be the N smallest. Sort them
 - See if we can find any others with sums smaller than the max of those N.
 - If, so, they will all have a **b** that is less than the cube root of this max. Find all of those and add to duplicates table.


Sort again and pick out the Nth one.

Hardy Code

- Look at it together
- Ask questions about anything you don't understand.
- I'll ask you questions.
- We'll add some timing computations.
- Try to figure out a big-Oh estimate.
- Then see how much of a speed-up we get by using a faster data structure

Doubly-linked list

- Each node has two pointers, prev and next.
- There is one other new node, tail, whose prev pointer points to the node containing the last element of the list.
- This makes remove() easier to write
 - and it also makes an efficient Listlterator possible.

figure 17.15 A doubly linked list