
Java Collections Framework
LinkedList Implementation

Work on Markov

Reminder: Exam #2 is Thursday, Jan 31.
In order to reduce time pressure, you
optionally may take the non-programming
part 7:10-7:50 AM.

Abstract Data Types and Data Structures
Markov
Material you have read
Anything else

Java Collections Framework
LinkedList Implementation
Work on Markov

Introductory page:
◦ http://java.sun.com/j2se/1.5.0/docs/guide/collecti

ons/index.html
Outline of the classes:
◦ http://java.sun.com/j2se/1.5.0/docs/guide/collecti

ons/reference.html
What’s new in JDK 1.5:
◦ http://java.sun.com/j2se/1.5.0/docs/guide/collecti

ons/changes5.html

http://java.sun.com/j2se/1.5.0/docs/guide/collections/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/collections/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/collections/reference.html
http://java.sun.com/j2se/1.5.0/docs/guide/collections/reference.html
http://java.sun.com/j2se/1.5.0/docs/guide/collections/changes5.html
http://java.sun.com/j2se/1.5.0/docs/guide/collections/changes5.html

Structure find insert/remove Comments
Array O(n) can't do it Constant-time access by position
Stack top only

O(1)
top only O(1) Easy to implement as an array.

Queue front only
O(1)

O(1) insert rear, remove front.

ArrayList O(log N) O(N) Constant-time access by position
Linked List O(n) O(1) O(N) to find insertion position.
HashSet/Map O(1) O(1) If table not too full
TreeSet/Map O(log N) O(log N) Kept in sorted order
MultiSet O(log N) O(log N) keep track of multiplicities
PriorityQueue O(log N) O(log N) Can only find/remove smallest
Tree O(log N) O(log N) If tree is balanced
Graph O(N*M) ? O(M)? N nodes, M edges
Network shortest path, maxFLow

Collection

SetList AbstractCollection

AbstractList AbstractSet

AbstractSequentialList
ArrayList

Vector

Stack

SortedSet

LinkedList HashSet TreeSet
Interface
Abstract Class
Concrete Class

Extends
Implements

This is the Java 1.2 picture. Java 1.5 added Queue,
PriorityQueue, and a few other interfaces and classes.

The main Java tool for specifying an ADT is …
◦ … an interface
◦ Major example: The java.util.Collection interface.
Some important methods from this interface:

Factory method

More specifically, what is a java.util.Iterator?
◦ It's an interface:
◦ interface java.util.Iterator<E>
◦ with the following methods:

An extension, ListIterator, adds:

In this continuation of the previous example, ag is a
Collection object.

In Java 1.5 we can simplify it even more.

Note that the Java compiler translates the latter code into the former.

addAll – add all of the elements from another
collection to this one
containsAll – does this collection contain all of
the elements of the other collection?
removeAll – removes all of this collections
elements that are also contained in the other
collection
retainAll - removes all of this collections
elements that are not contained in the other
collection
toArray – returns an array that contains the same
elements as this collection.

The java.util.Arrays class provides static methods for
sorting and doing binary search on arrays. Examples:

The java.util.Collections
class provides similar static methods
for sorting and doing binary search on
Collections. Specifically Lists.
Look up the details in the
documentation.

In weiss.util, the author shows "bare bones"
possible implementations of some of the
classes in java.util.
He picks the methods that illustrate the
essence of what is involved in the
implementation, for educational purposes.
Some other Data Structures classes are in
weiss.nonstandard.

In weiss.nonstandard, the author shows
implementations of some common data
structures that are not part of the java.util
package, and he also shows alternate
approaches to implementing some classes
(like Stack and LinkedList) that are in
java.util.

If you followed the directions in assignment
1, both of these packages should be
accessible to your code.
◦ import weiss.nonstandard.*;
Documentation is available, and you can copy
it to your computer.

It’s time to look at an implementation.

A List is an ordered collection, items accessible by
position. Here, ordered does not mean sorted.
interface java.util.List<E>
User may insert a new item at a specific position.
Some important List methods:

Store items contiguously in a "growable" array.

Looking up an item by index takes constant time.

Insertion or removal of an object takes linear time
in the worst case and on the average (why?).

If Comparable list items are kept in sorted order in
the ArrayList, finding an item takes log N time
(how?).

Let’s sketch some of the implementation together.
◦ Fields, constructor for empty list.

More specifically, what is a java.util.Iterator?
◦ It's an interface:
◦ interface java.util.Iterator<E>
◦ with the following methods:

An extension, ListIterator, adds:

Stores items (non-contiguously) in nodes; each
contains a reference to the next node.
Lookup by index is linear time (worst, average).
Insertion or removal is constant time once we have
found the location.
◦ show how to insert A4 after A1.
If Comparable list items are kept in sorted order,
finding an item still takes linear time.

class ListNode{
Object element; // contents of this node
ListNode next; // link to next node

ListNode (Object element,
ListNode next) {

this.element = element;
this.next = next;

}

ListNode (Object element) {
this(element, null);

}
ListNode () {
this(null);

}
}

How to implement
LinkedList?

fields?

Constructors?

Methods?

class LinkedList implements List {
ListNode first;
ListNode last;

Constructors: (a) default (b) single element.
methods:
public boolean add(Object o)
Appends the specified element to the end of this list (returns true)
public int size() Returns the number of elements in this list.
public void add(int i, Object o) adds o at index i.
throws IndexOutOfBoundsException

public boolean contains(Object o)
Returns true if this list contains the specified element. (2 versions).
public boolean remove(Object o)

Removes the first occurrence (in this list) of the specified element.
public Iterator iterator()Can we also write listIterator() ?

Returns an iterator over the elements in this list in proper sequence.

	CSSE 220 Day 20
	CSSE 220 Day 20
	Answers to your questions
	Today's agenda
	Java Collections Framework Documentation
	Data Structure Overview
	Some Collection interfaces and classes
	Collections classes and interfaces�(classes at top, interfaces at bottom)
	Specifying an ADT in Java
	What's an iterator?
	Example: Using an Iterator
	Tangent: Iterating over an enumerated type
	Additional Methods from the Collection Interface
	Sort and Binary Search
	Sort and Binary Search
	The weiss.util and weiss.nonstandard packages
	The weiss.util and weiss.nonstandard packages
	The weiss.util and weiss.nonstandard packages
	Now that we know about using some data structures …
	List Interface (extends Collection)
	ArrayList implementation of the List Interface
	What's an iterator?
	LinkedList implementation of the List Interface
	Consider parts of a LinkedList implementation
	Let's do parts of a LinkedList implementation

