
Continue Data Structures Grand Tour
FixedLengthQueue

Markov Orientation and kickoff

Turn in the written problem from HW 18.
Before tomorrow
◦ Reading assignment from Weiss
◦ Read and understand the Markov assignment
◦ Take the short ANGEL Quiz about the contents of

the Markov assignment documents.
I'll send an email when it is available

This is one of the most challenging* and
enlightening courses on our campus, IMHO
Disco I is no longer a pre-requisite
A special note to CPE majors

* previously it was more challenging, because 220 was
too easy. Some of the challenges have been moved to
220.

Term 2006-07 2007-08
Winter 18 44
Spring 20 36
Total 38 80

Come, be part of
this hot new
trend!

Continue the Data Structures Tour
FixedLengthQueue Program
Markov start-up
Short class due to Convocation
schedule

Array (1D, 2D, …)
Stack
Queue
List
◦ ArrayList
◦ LinkedList
Set
MultiSet
Map (a.k.a. table, dictionary)
◦ HashMap
◦ TreeMap

What is "special" about
each data type?
What is each used for?
What can you say about
time required for
- adding an element?
- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.

A Table of key-value pairs.
Insert and look up things by key.
Implementations:
◦ TreeMap
◦ HashMap
Same running time as the corresponding sets.

HashMap<String, Integer> hm = new HashMap<String, Integer>();
hm.put("Mitt", 20);
hm.put("Mike", 85);
hm.put("John", 20);
hm.put("Rudy", 0);
hm.put("Alan", 95);
hm.put("Fred", 50);
int mikeValue = hm.get("Mike");
System.out.println("Value for Mike: " + mikeValue);
System.out.println("All entries in the HashMap:");
System.out.println(hm);
Collection values = hm.values();
System.out.println("Values: " + values);
Set keys = hm.keySet();
System.out.println("Keys: " + keys);

Output:
Value for Mike: 85
All entries in the HashMap:
{Mitt=20, Alan=95, Fred=50, John=20, Mike=85, Rudy=0}
Values: [20, 95, 50, 20, 85, 0]
Keys: [Mitt, Alan, Fred, John, Mike, Rudy]

Note that the
elements are not
in Comparable
order.

Priority Queue: Each item has an associated priority
◦ Only the item with minimum priority is accessible.
◦ Operations:

insert(add)
findMin(peek)
deleteMin(poll)

◦ The chow line and the blood line
◦ Useful for simulations and for scheduling in an OS
◦ Also in a famous Data Compression algorithm (230)
◦ You will explore some implementations in the

homework exercises later this week
◦ Efficient implementation: binary heap (230)

All three operations are log N time

Collection of nodes
One specialized node is the root.
A node has one parent (unless it is the root)
A node has zero or more children.
Example: directory structure on a hard drive.
Binary tree: left and right children
Binary search tree
◦ Nodes in left subtree precede the root in item ordering
◦ Nodes in right subtree precede the root in item ordering.
Much more on trees in 230.

A collection of vertices and edges
Each edge joins two nodes (the two nodes
may be allowed to be the same)
Directed or undirected
Graph Theory has been a subject of
mathematical study for almost 3 centuries
Example: Road map
Example Diagram of links between web pages
Find is O(N). Add, remove depend on
implementation O(1), O(N), O(N2)

A network is a graph whose edges have
numeric labels
Examples:
◦ Road map (mileage)
◦ Airline's flight map (flying time)
◦ Plumbing system (gallons per minute)
◦ Computer network (bits/second)
Famous problems:
◦ Shortest path
◦ Maximum flow
◦ Traveling salesman

Array (1D, 2D, …)
Stack
Queue
List
◦ ArrayList
◦ LinkedList
Set
MultiSet
Map (a.k.a. table, dictionary)
◦ HashMap
◦ TreeMap
PriorityQueue
Tree
Graph
Network

What is "special" about
each data type?
What is each used for?
What can you say about
time required for
- adding an element?
- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.

Input: a text file
the skunk jumped over the stump
the stump jumped over the skunk
the skunk said the stump stunk
and the stump said the skunk stunk

Processing:
◦ Gather word

pattern statistics
◦ Store them in an

appropriate data
structure
◦ Output text that

follows the patternsOutput: a randomly-generated
text file with many of the same
properties as the original file

Fullly justified, of course ☺

Input: a text file
the skunk jumped over the stump
the stump jumped over the skunk
the skunk said the stump stunk
and the stump said the skunk stunk

Statistics (n=1):
NONWORD the
the skunk (4), stump

(4)
skunk jumped, said,

stunk, the
jumped over (2)
over the (2)

stump jumped, said,
stunk, the

said the (2)

stunk and,
NONWORD

and the

Input: a text file
the skunk jumped over the stump
the stump jumped over the skunk
the skunk said the stump stunk
and the stump said the skunk stunk

Statistics (n=2):
NW NW the
NW the skunk
the skunk jumped,

said, the,
stunk

skunk jumped over
jumped over the
over the stump,

skunk
the stump the,

jumped,
stunk, said

…

n=1:
the skunk the skunk
jumped over the
skunk stunk

the skunk stunk

n=2:
the skunk said the
stump stunk and the
stump jumped over
the skunk jumped
over the skunk stunk

Note: it’s also
possible to hit the
max before you hit
the last nonword.

Do this step LAST
Output needs to be full-justified (as on the
Output slide)
You are required to use lists (Array and
Linked) to hold the output line and to make it
easier to modify the line (by adding extra
spaces) before you print it

For the prefixes?

For the set of suffixes?

To relate them?

Statistics (n=2):

NW NW
NW the
the skunk
skunk jumped
jumped over
over the
the stump
…

FixedLengthQueue: a specialized data structure.
Useful for Markov problem.
You and your Markov partner should implement
it in the next 25 minutes or so.
Put both people's names in a comment at the top
of your program file. Submit to one person's
repository.
Then read (twice) and begin digesting the Markov
assignment.
Discuss it with your partner.
Plan when you will meet today to continue the
discussion and get started on the program.

	CSSE 220 Day 19
	CSSE 220 Day 19
	CSSE 230 Enrollments
	Today's agenda
	Some basic data structures
	Map
	Java Map Example - HashMap
	Priority Queue:
	Tree
	Graph
	Network
	Some basic data structures
	Markov Chain Progam
	Markov
	Markov
	Output
	Full Justification
	Markov Data structures
	Fixed-length Queue and Markov

