
Function Objects Exercise
Generic Methods

Searching (sequential, Binary, Interpolation)
Abstract Data Types and Data Structures

Work on the exercise that you began
Thursday for the first 15 minutes of class.
If you don't finish it then, finish it before 8:05
AM Tuesday.

Minesweeper team/team members peer
review due by 5 PM Tuesday.
You will be asked to review several teams'
Minesweeper programs for functionality
issues before the end of the week.
◦ More details later.
Next Programming assignment: Hardy's Taxi.
Due next Monday, but begin thinking about
it today.
◦ An individual assignment.
Markov assignment will be done in pairs. You
can choose your partner again.
◦ Must be different than your Minesweeper partner.

Function Objects
Material you have read
Anything else

Function object Exercise
Generic methods
Searching (sequential, binary,
interpolation)
Abstract Data types and Data
Structures

Consider the following methods:

Can we write print in a generic way
so we do not have to have a
separate method for each type of array?

public static void main(String[] args) {
String [] ss = {"abc", "def", "ghij"};
Integer [] ii = {new Integer(5), new Integer(6)};
print(ss);
print(ii);

}

public static void print(String[] strings){
for (String s: strings)

System.out.println(s);
}

public static void print(Integer[] ints){
for (Integer i: ints)

System.out.println(i);
}

}

public static <T> void print (T[] a){
for (T obj: a)

System.out.println(obj);
}

The type variable <T> before the method's
return type tells the compiler: T will be a
generic type for this method. Substitute for it
the actual type of the argument.
This method can be called with any array of
objects.
For some other methods, we need to
constrain the generic type used (next slide)

Suppose want a generic method to take an array as
its only argument, and return the smallest item in
the array.
This only makes sense if the base type of the array
implements the Comparable interface.

This works, but gives a warning
◦ Type safety: The method compareTo(Object) belongs to

the raw type Comparable. References to generic type
Comparable<T> should be parameterized

How to fix it?

public static <T extends Comparable> T min (T[] a) {
T smallest = a[0];
for (int i=1; i<a.length; i++)

if (smallest.compareTo(a[i]) > 0)
smallest = a[i];

return smallest;
}

Note that in this context "extends" means
either "extends" or "implements".
But this could be too restrictive. Perhaps we
want to be able to be able to compare
elements of a subclass with elements of a
superclass (as in the Shape hierarchy from a
couple of weeks ago).

public static <T extends Comparable<T>> T min (T[] a) {
T smallest = a[0];
for (int i=1; i<a.length; i++)

if (smallest.compareTo(a[i]) > 0)
smallest = a[i];

return smallest;
}

The ? is a "wild card". <? super T> says we
can compare to an element of any
superclass of T.
For more on wild cards (optional) see Weiss
sections 4.7.2-4.7.4 or
http://www.devarticles.com/c/a/Java/Wildc
ards-and-Generic-Methods-in-Java/

public static <T extends Comparable<? super T>> T min (T[] a) {
T smallest = a[0];
for (int i=1; i<a.length; i++)

if (smallest.compareTo(a[i]) > 0)
smallest = a[i];

return smallest;
}

http://www.devarticles.com/c/a/Java/Wildcards-and-Generic-Methods-in-Java/
http://www.devarticles.com/c/a/Java/Wildcards-and-Generic-Methods-in-Java/

Search a collection of data for an item (or all
items) whose key is a certain value (or has
some relationship to a certain value.
The key is usually one particular field of an
object, but it may be a combination of fields.
In today's examples, we assume that the
collection is an array of N items.

•Recap: number of comparisons for ….

•Best case, worst case, average case?

•Very simple code, but not very good performance.

public static <AnyType extends Comparable<? super AnyType>>

int search(AnyType [] a, AnyType x) {

for (int i=0; i<a.length; i++)

if (a[i].compareTo(x)==0)

return i;

return NOT_FOUND;

}

• Best case, worst case, average case?
• What if we change the algorithm to binary

search?

public static <AnyType extends Comparable<? super AnyType>>
int search(AnyType [] a, AnyType x) {

for (int i=0; i<a.length; i++)
if (a[i].compareTo(x)>0)
return NOT_FOUND;

else if (a[i].compareTo(x)==0)
return i;

return NOT_FOUND;

What is the basic idea?
What makes it more efficient?

public static final int NOT_FOUND = -1;
public static <T extends Comparable<? super T>>

int binarySearch(T[] a, T x) {
int low = 0;
int high = a.length - 1;
int mid;
while(low <= high) {

mid = (low + high) / 2;

if(a[mid].compareTo(x) < 0)
low = mid + 1;

else if(a[mid].compareTo(x) > 0)
high = mid - 1;

else
return mid;

}
return NOT_FOUND; // NOT_FOUND = -1

}

A more natural appraoch.
If you were looking for my name in the phone
book, would you start your search in the
middle?
In interpolation search, we choose where in
the table to probe based on the value of the
key relative to the first and last keys in the
part of the table we are searching.

general formula: when looking for item x in
a[low] … a[high], the next place to search is:

Average case # of probes:

Simple references: Weiss Section 5.6.3,
http://en.wikipedia.org/wiki/Interpolation_se
arch

http://en.wikipedia.org/wiki/Interpolation_search
http://en.wikipedia.org/wiki/Interpolation_search

What if the data is not uniform?
Phone book
Phone book in Wilkes-Barre, PA
RHIT CSSE staff members, 1986-2007.

anderson
atkins
ardis
azhar
bagert
baker
boutell
bowman
chenoweth
chidanandon

mohan
mellor
merkle
mutchler
oexmann
sengupta
surendran
sullivan
wollowski
young

clifton
criss
curry
dalkolic
defoe
degler
jeschke
kaczmzrczyk
kinley
laxer

Initially sorting the array (expensive)
Keeping it sorted if the data changes
◦ That's why we call these techniques "static search"
◦ Other approaches (such as trees and hash tables)

work better for dynamic data

Another reference to
this story (still live):

http://www.hinduonnet
.com/thehindu/2003/0
7/09/stories/2003070
904161200.htm

Reference
(unfortunately it
disappeared):

http://www.worldmag.
com/world/issue/07-
26-03/opening_5.asp

http://www.hinduonnet.com/thehindu/2003/07/09/stories/2003070904161200.htm
http://www.hinduonnet.com/thehindu/2003/07/09/stories/2003070904161200.htm
http://www.hinduonnet.com/thehindu/2003/07/09/stories/2003070904161200.htm
http://www.hinduonnet.com/thehindu/2003/07/09/stories/2003070904161200.htm
http://www.worldmag.com/world/issue/07-26-03/opening_5.asp
http://www.worldmag.com/world/issue/07-26-03/opening_5.asp
http://www.worldmag.com/world/issue/07-26-03/opening_5.asp

Chapters 1-5: Review of Java, and
foundations of algorithm analysis
6 Data Structure interface and usage
7-9 Fundamental algorithms
10-14 Applications of data structures and
algorithms
15-21 Implementation of basic data
structures.
22-24 Advanced data structures

What is data?
What do we mean by "structure"
◦ A data type

But what is a data type, really?
◦ An interpretation of the bits

An interpretation is basically a set of operations.
The interpretation may be provided by the hardware,
as for int and double types, or by software, as for the
java.math.BigInteger type.
Or by software with much assistance from the
hardware, as for the java.lang.Array type.

A mathematical model of a data type. Specifies:
◦ The type of data stored
◦ the operations supported
◦ the types and return values of these operations
◦ Specifies what each operation does, but not how it is

implemented.
Example: Non-negative integer ADT.
A special value: zero:
Basic operations include succ pred isZero .
Derived operations include plus .
◦ Sample rules:

isZero(succ(n)) false
plus(n, zero) n
plus(n, succ(m)) succ(plus(n, m))

Standard implementation:
Binary numbers. But there
are many other possibilities.

Rules are independent of
implementation.

	CSSE 220 Day 16
	Function Object exercise
	CSSE 220 Day 16
	Answers to your questions
	Today's agenda
	Generic methods: the need
	Generic method: simple solution
	Generic method: type constraint
	Generic method: fix the warning
	Generic method: more generally
	Searching: Problem statement
	Sequential search of an Unsorted Array
	Sequential search of a sorted array
	Binary search
	Code: Binary Search
	Interpolation search
	Interpolation search
	Interpolation search limitation
	RHIT CSSE staff members, 1986-2007 (all that I can remember)
	The downsides of binary search and interpolation search
	Break
	Interlude
	Weiss Book Overview
	Data Structures and the Java Collections Framework
	What is an Abstract Data Type (ADT)?�

