
Threads
More algorithm efficiency analysis, Big-Oh

Work on Minesweeper

See the nine announcements in the email
message that I sent you yesterday afternoon.
By now, everyone should know how to submit
files in AFS and to SVN repositories.
◦ I have been rather lenient in the past if you didn't

get it submitted correctly. By now you should be
able to submit it to the right place on time.

It is important that we not only be able to write
object-oriented programs, but that we build a
vocabulary that enables us to communicate with
each other about them.
That is why I asked you to spend four weeks
learning the "lingo" of OOP in Java.
Tomorrow is the check-up on that.
This ANGEL-based quiz is closed book and
notes.
It consists of matching questions, and you will
only have about 30 seconds per term to complete
it. So know your terms well!

Each class day this week.
◦ Discuss a Java feature (threads, function objects)
◦ A little bit on algorithm analysis
◦ Some time to work on Minesweeper (typically 30+

minutes).
A progress report is due at the end of each
class.
◦ It is basically an updated version of your IEP, showing

your progress on the phases that you outlined.
◦ Name today's report Day 13 progress Report.xlsx

(You should be able to use "Save as" in Excel to do
this.)
◦ Commit it to your Minesweeper repository.

Additional requirement for your project:
You should add a "cheat" feature
◦ to help you debug your code
◦ to help me test your code more easily
Details are on the Assignments discussion
forum

Multithreaded Programs
More on Algorithm analysis – Big Oh
Work on Minesweeper

Often we want our program to do multiple
(semi) independent tasks at the same time
Each thread of execution can be assigned to a
different processor, or one processor can
simulate simultaneous execution through "time
slices" (each probably a large fraction of a
millisecond)

Time
Slices 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

running
thread 1
running
thread 2

There is always one default thread; you can
create others.
Uses for additional threads
◦ Animation that runs while still allowing user

interaction.
◦ A server (such as a web server) communicates with

multiple clients.
◦ Animate multiple objects (such as the timers in the

CounterThreads example – in a few minutes).
A thread may sleep for a specified amount of
time by calling

Thread.sleep(numberOfMilliseconds);

How to create and run a new thread
◦ Define a new class that implements the Runnable

interface. (it has one method: public void run();)
◦ Place the code for the threaded task in the run() method:

class MyRunnable implements Runnable {
public void run () {

// task statements go here
}

}
◦ Create an object of this class:

Runnable r = new MyRunnable();
◦ Construct a Thread object from this Runnable object

Thread t = new Thread(r);
◦ Call the start method to start the thread

t.start();

Greetings –simple threads, different wait times
AnimatedBall – move balls, stop with click
CounterThreads – multiple independent counters
CounterThreadsRadioButtons – same as above,
but with radio buttons.

The remaining two are more advanced than we will
use in this course, dealing with race conditions
and synchronization. Detailed descriptions are
in Big Java.
◦ BankAccount
◦ SelectionSorter

Thu Jan 03 16:09:36 EST 2008 Hello, World!
Thu Jan 03 16:09:36 EST 2008 Goodbye, World!
Thu Jan 03 16:09:36 EST 2008 Hello, World!
Thu Jan 03 16:09:36 EST 2008 Goodbye, World!
Thu Jan 03 16:09:36 EST 2008 Goodbye, World!
Thu Jan 03 16:09:36 EST 2008 Hello, World!
Thu Jan 03 16:09:37 EST 2008 Goodbye, World!
Thu Jan 03 16:09:37 EST 2008 Hello, World!
Thu Jan 03 16:09:38 EST 2008 Hello, World!
Thu Jan 03 16:09:38 EST 2008 Goodbye, World!
Thu Jan 03 16:09:38 EST 2008 Goodbye, World!
Thu Jan 03 16:09:38 EST 2008 Hello, World!
Thu Jan 03 16:09:39 EST 2008 Goodbye, World!
Thu Jan 03 16:09:39 EST 2008 Goodbye, World!
Thu Jan 03 16:09:39 EST 2008 Goodbye, World!
Thu Jan 03 16:09:39 EST 2008 Hello, World!
Thu Jan 03 16:09:39 EST 2008 Hello, World!
Thu Jan 03 16:09:39 EST 2008 Goodbye, World!
Thu Jan 03 16:09:40 EST 2008 Hello, World!
Thu Jan 03 16:09:40 EST 2008 Goodbye, World!
. . .

One thread prints
the Hello
messages; the
other Thread prints
the Goodbye
messages.

Each thread sleeps
for a random
amount of time
after printing each
line.

This example was adapted from Cay
Horstmann's Big Java, Chapter 23

public class GreetingThreadTester{

public static void main(String[] args){

// Create the two Runnable objects
GreetingRunnable r1 = new GreetingRunnable("Hello, World!");
GreetingRunnable r2 = new GreetingRunnable("Goodbye, World!");

// Create the threads from the Runnable objects
Thread t1 = new Thread(r1);
Thread t2 = new Thread(r2);

// Start the threads running.
t1.start();
t2.start();

}
}

We do not call run()
directly.
Instead we call
start(), which sets
up the thread
environment, and
calls run() for us.

import java.util.Date;

public class GreetingRunnable implements Runnable {

private String greeting;
private static final int REPETITIONS = 15;
private static final int DELAY = 1000;

public GreetingRunnable(String aGreeting) {
greeting = aGreeting;

}

public void run() {
try {

for (int i = 1; i <= REPETITIONS; i++){
Date now = new Date();
System.out.println(now + " " + greeting);
Thread.sleep((int)(DELAY*Math.random()));

}
} catch (InterruptedException exception){
}

}
}

If a thread is interrupted while it is sleeping,
an InterruptedException is thrown.

A simplified version of the way BallWorlds
does animation
When balls are created, they are given
position, velocity, and color
Our run() method tells each of the balls to
move, then redraws them
Clicking the mouse turns movement off/on.
Think about: could this application be
written without creating the new thread?
Demonstrate the program!

public class AnimatedBallViewer {

static final int FRAME_WIDTH = 600;
static final int FRAME_HEIGHT = 500;

public static void main(String[] args){
JFrame frame = new JFrame();

frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
frame.setTitle("BallAnimation");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

AnimatedBallComponent component = new AnimatedBallComponent();
frame.add(component);

frame.setVisible(true);
new Thread(component).start();

}
}

This class has all of
the usual stuff, plus
this last line of code
that starts the
animation.

class Ball {
private double centerX, centerY, velX, velY;
private Ellipse2D.Double ellipse;
private Color color;
private static final double radius = 15;

public Ball(double cx, double cy, double vx, double vy, Color c){
this.centerX = cx;
this.centerY = cy;
this.velX = vx;
this.velY = vy;
this.color = c;
this.ellipse = new Ellipse2D.Double (

this.centerX-radius, this.centerY-radius,
2*radius, 2*radius);

}

public void fill (Graphics2D g2) {
g2.setColor(this.color);
g2.fill(ellipse);

}

public void move (){
this.ellipse.x += this.velX;
this.ellipse.y += this.velY;

}
}

Everything here should
look familiar, similar to
code that you wrote for
BallWorlds.

public class AnimatedBallComponent extends JComponent
implements Runnable, MouseListener {

private ArrayList<Ball> balls = new ArrayList<Ball>();
private boolean moving = true;
public static final long DELAY = 30;
public static final int ITERATIONS = 300;

public AnimatedBallComponent() {
super();
balls.add(new Ball(40, 50, 8, 5, Color.BLUE));
balls.add(new Ball(500, 400, -3, -6, Color.RED));
balls.add(new Ball(30, 300, 4, -3, Color.GREEN));
this.addMouseListener(this);

}

Again, there
should be no
surprises here!

public void run() {
for (int i=0; i<ITERATIONS; i++) {

if (moving){
for (Ball b:balls)

b.move();
this.repaint();

}
try {

Thread.sleep(DELAY);
} catch (InterruptedException e) {}

}
}

public void paintComponent(Graphics g){
Graphics2D g2 = (Graphics2D)g;
for (Ball b:balls)

b.fill(g2);
}

public void mousePressed (MouseEvent arg0) {
moving = !moving;

}

Each time through
the loop (if moving),
tell each ball to
move, then repaint

Sleep for a while

Draw each ball

Toggle "moving"
when the mouse
is pressed

Could this program have been written without
creating the new thread?

With regular buttons

With radio buttons
How many
threads
does this
application
appear to
have?

public class CounterThreads {

public static void main (String []args) {
JFrame win = new JFrame();
Container c = win.getContentPane();
win.setSize(600, 250);
c.setLayout(new GridLayout(2, 2, 10, 0));
c.add(new CounterPane(200));
c.add(new CounterPane(500));
c.add(new CounterPane(50)); // this one will count fast!
c.add(new CounterPane(1000));

win.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
win.setVisible(true);

}
}

Same old stuff!

class CounterPane extends JComponent implements Runnable {

private int delay; // sleep time before changing counter
private int direction = 0; // current increment of counter
private JLabel display = new JLabel("0");

// Constants to define counting directions:
private static final int COUNT_UP = 1; // Declaring these
private static final int COUNT_DOWN = -1; // constants avoids
private static final int COUNT_STILL = 0; // "magic numbers"

private static final int BORDER_WIDTH = 3;
private static final int FONT_SIZE = 60;

public CounterPane(int delay) {

JButton upButton = new JButton("Up"); // Note that these do
JButton downButton = new JButton("Down"); // NOT have to be fields
JButton stopButton = new JButton("Stop"); // of this class.

this.delay = delay; // milliseconds to sleep

this.setLayout(new GridLayout(2, 1, 5, 5));
// top row for display, bottom for buttons.

JPanel buttonPanel = new JPanel();
buttonPanel.setLayout(new GridLayout(1, 3, 8, 1));
display.setHorizontalAlignment(SwingConstants.CENTER);
display.setFont(new Font(null, Font.BOLD, FONT_SIZE));

// make the number display big!

this.add(display);
this.add(buttonPanel);
this.setBorder(BorderFactory.createLineBorder(Color.blue,

BORDER_WIDTH));
// Any Swing component can have a border.
this.addButton(buttonPanel, upButton, Color.orange, COUNT_UP);
this.addButton(buttonPanel, downButton, Color.cyan, COUNT_DOWN);
this.addButton(buttonPanel, stopButton, Color.pink, COUNT_STILL);

Thread t = new Thread(this);
t.start();

Put a simple border around the
panel. There are also more complex
border styles that you can use.

A lot of the repetitive work is done
by the calls to addButton().

The action listener added here is an anonymous
inner class that implements ActionListener.
Because it is an inner class, its method can
access this CounterPane's dir instance variable.

// Adds a control button to the panel, and creates an
// ActionListener that sets the count direction.
private void addButton(Container container,

JButton button,
Color color,
final int dir) {

container.add(button);
button.setBackground(color);
button.addActionListener(new ActionListener () {

public void actionPerformed(ActionEvent e) {
direction = dir;

}
});

}

Note that each button gets its own ActionListener
class, created at runtime. This is Swing's
"preferred way" of providing ActionListeners.

The value of dir will be 1, -
1, or 0, to indicate counting
up, down, or neither.

JPanel is a subclass
of Container

This method is short and simple, because dir
is always the amount to be added to the
counter (1, -1, or 0).

public void run() {
try {
do {
Thread.sleep(delay);
display.setText(Integer.parseInt(display.getText())

+ direction + "");
} while (true);

} catch (InterruptedException e) { }
}

}

Look through the code, discussing it with your
partner and/or lab assistants until you think you
understand it all. Answer the following questions:

1. How does a CounterPane know whether to count
up or down or stay the same?

2. When a counter is not changing, does its thread
use less CPU time than one that is changing?

3. Would it be easy to add code to the main method
that creates a SuperStop button, so that clicking
this button stops all counters? Explain.

public CounterPaneRadio(int delay) {

JRadioButton upButton = new JRadioButton("Up");
JRadioButton downButton = new JRadioButton("Down");
JRadioButton stopButton = new JRadioButton("Stop");

ButtonGroup group = new ButtonGroup();
group.add(upButton);
group.add(downButton);
group.add(stopButton);
stopButton.setSelected(true);

. . .
And we remove the Color parameter from addButton()

A thread t ends when its run method
terminates.
Threads used to have a stop method, but it is
now deprecated.
Instead of stopping a thread, you notify it
that it should stop itself (return from its run
method) by calling t.interrupt();
The thread can check to see if it has been
interrupted by calling this.isInterrupted();
If so, the thread can decide to clean up and
stop itself.

Always code as if the guy who
ends up maintaining your code
will be a violent psychopath
who knows where you live.

--Martin Golding

Some simple efficiency tips
◦ If a statement in a loop calculates the same value each

time through, move it outside the loop
◦ Store and retain data on a “need to know” basis.
◦ Don’t store what you won’t reuse!

Do store what you need to reuse!

◦ Don’t put everything into an array when you only need
one or two consecutive items at a time.

◦ Don’t make a variable be a field when it can be a local
variable of a method.

for (int i=0; i < a.length; i++)
if (a[i].compareTo(soughtItem) > 0)

return NOT_FOUND;
else if (a[i].compareTo(soughtItem) == 0)

return i;
return NOT_FOUND;

•What should we count?
•Best case, worst case, average case?

Don't forget to commit your progress report
to the repository before the end of class.

Please turn in your in-class quiz now.

	CSSE 220 Day 13
	CSSE 220 Day 13
	Key Concepts quiz tomorrow
	Class this week
	Minesweeper Note
	Today's agenda
	Multithreaded programs
	A Java Program's Threads
	The Emperor's New Threads
	Threads examples (in your SVN repos.)
	Simple example (1) – Output
	Simple example(2) – GreetingThreadTester
	Simple example(3) - our Runnable class
	Ball Animation
	Set up the frame
	The Ball class
	AnimatedBallComponent:�Instance Variables and Constructor
	AnimatedBallComponent:�run, paintComponent, mousePressed
	Is the thread necessary?
	Another animation: CounterThreads
	CounterThreads setup
	CounterPane Basics
	CounterPane Constructor
	CounterPane's addButton method
	CounterPane's run method
	CounterThreads questions
	RadioButton version
	Ending a thread
	Section 02 ended here
	Interlude
	Program efficiency, part 2
	Familiar example: �Linear search of a sorted array of Comparable items
	Work on Minesweeper

