
Inheritance and Polymorphism
Unit Testing

The MineSweeper project will be done by
pairs of students. Think about who you'd like
to work with. I will ask for your preferences
next week or so.
Some "reality check" changes to my approach:
◦ Giving up trying to do solo everything that 3 people

did last term. Results:
Sometimes no daily quizzes or ANGEL quizzes.
I'll do them when I reasonably can, and not when I
can't.
Matt can add more next term.
Email at night and co-dependency.

Java
Reading from the textbook
Homework
etc.

Main reasons for inheritance
◦ Organization
◦ Code reuse

Why not just copy and paste the code?
The usual implication of inheritance: IS-A
◦ If we write A extends B, it says that an object of

type A IS-A object of type B, and can be used as if it
is a B.
◦ At the very least, it means that A has the same

operations as B (perhaps implemented a little bit
differently).

class A extends B
◦ We say that A is a subclass of B and B is the superclass

of A.
◦ A class can only have one superclass.
◦ If you do not include extends in a class's definition, that

class extends Object.
A has all of the fields and methods B, plus
◦ perhaps some new fields
◦ almost always some new or overridden methods.
If A's constructor explicitly Call's B's constructor.
◦ Use super as the name of the "constructor call".
◦ That call must be the first statement in A's constructor

code.

Extension.
The subclass has the same operations and
can use some of the same code as its parent
class (another name for superclass).
It is closely related to the parent class,
though there may not be a strict IS-A
relationship.
Example:
◦ class Point3D extends Point

Gives part of a class definition
Intended for other classes to extend it
Not all methods are defined.
For some we just have method headers with a
semicolon.
Those methods must be declared abstract.
Cannot directly instantiate an abstract class.
Can instantiate a concrete subclass.

The ultimate abstract class!
Only contains constant definitions and method
headers. No fields, no constructors, no method
definitions.
All methods in an interface are public and abstract,
so it is not necessary to use those keywords in the
method headers at all.
An interface serves as a contract.
A class can declare that it implements the interface,
and it proves this by implementing all of the methods
in the interface (i.e. it fulfills the contract).
A class can implement any number of interfaces.
In a moment we will look at Weiss's example of
abstract classes and interfaces.

Actually a simplification of Comparable that does
not use type parameters
◦ We'll discuss type parameters later.

public interface Comparable {
int compareTo(Comparable other);

}
◦ Returns a positive integer if this > other,

negative if this < other, zero if this ==other.

Any class that says it implements Comparable must
include the definition of a compareTo() method
with the given behavior.

Figure 4.10
The hierarchy of shapes used in an inheritance example

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Actually, we can
(and will) do
better, making
Shape be an
interface, and
defining a new
abstract class,
AbstractShape.

/* javadoc is omitted in many in-class examples so
code will fit on PowerPoint slides. */

public interface Shape extends Comparable {

public double area();

public double perimeter();

public double semiPerimeter();
}

These are examples of methods that can apply to every shape.
Every object that calls itself a Shape must implement these
methods.

public abstract class AbstractShape implements Shape
{

public abstract double area();
public abstract double perimeter();

/* required by the Comparable interface */
public int compareTo(Object rhs) {

double diff = this.area() - ((Shape)rhs).area();
if(diff == 0)

return 0;
else if(diff < 0)

return -1;
else

return 1;
}

public double semiPerimeter() {
return this.perimeter() / 2;

}
}

Note that we can
use area and
perimeter in
the definitions
of compareTo
and
semiperimeter,
even though the
former two
methodsare not
actually
implemented in
this class.

compareTo is not
required to return these
specific values
(-1 and 1).
Why do you think Weiss
does it this way?

public class Circle extends AbstractShape {

private double radius;

public Circle(double rad) {
this.radius = rad;

}

public double area() {
return Math.PI * this.radius * this.radius;

}

public double perimeter() {
return 2 * Math.PI * this.radius;

}

@Override
public String toString() {

return "Circle: " + this.radius;
}

}

implements the
abstract methods

overrides a
method from the
Object class

implements a
constructor

implements the
abstract methods

overrides a
method from the
Object class

Methods unique
to this class

public class Rectangle extends AbstractShape {

private double length;
private double width;

public Rectangle(double len, double wid) {
this.length = len;
this.width = wid;

}

public double area() {
return this.length * this.width;

}

public double perimeter() {
return 2 * (this.length + this.width);

}

@Override
public String toString() {

return "Rectangle: " + this.length +
" " + this.width;

}

public double getLength() {
return this.length;

}

public double getWidth() {
return this.width;

}
}

Square inherits almost all of its
functionality from Rectangle.

public class Square extends Rectangle {
public Square(double side) {

super(side, side);
}

public String toString() {
return "Square: " + this.getLength();

}
}

The roots of the word polymorphism:
◦ poly:
◦ morph:
Why is this an appropriate name for this
concept?
How do you implement code that uses
polymorphism?

dynamic binding of method calls
to actual methods.

The class of the actual object is
used to determine which class's

method to use.
We'll see it in the ShapesDemo

code.

If we don’t test for
null, we could get a
NullPointerException.

How do we see
polymorphism
in action here?

Why are these methods static?

Note the implicit,
polymorphic call to
toString()

Output:

Please do this silently, so you will not spoil it for anyone else.

I will present you with something to look at and a question about it.
You will have about 10 seconds. Again, don't say anything aloud.

Count every "F" in the following text:

FINISHED FILES ARE THE RE
SULT OF YEARS OF SCIENTI
FIC STUDY COMBINED WITH
THE EXPERIENCE OF YEARS...

HOW MANY?

Now that you know what to expect, try again. Do you
get the same count? Again, do not say anything.

Count every "F" in the following text:

FINISHED FILES ARE THE RE
SULT OF YEARS OF SCIENTI
FIC STUDY COMBINED WITH
THE EXPERIENCE OF YEARS...

HOW MANY?

Hint: The correct answer is NOT _____

Count every "F" in the following text:

FINISHED FILES ARE THE RE
SULT OF YEARS OF SCIENTI
FIC STUDY COMBINED WITH
THE EXPERIENCE OF YEARS...

HOW MANY?

There are actually ____ of them.
Can you see them?

Count every "F" in the following text:

FINISHED FILES ARE THE RE
SULT OF YEARS OF SCIENTI
FIC STUDY COMBINED WITH
THE EXPERIENCE OF YEARS...

Count every "F" in the following text:

FINISHED FILES ARE THE RE
SULT OF YEARS OF SCIENTI
FIC STUDY COMBINED WITH
THE EXPERIENCE OF YEARS...

Unit Testing:
Test each class/method, independent of the
larger program in which they live.
How much testing to do?
◦ "Test until fear turns to boredom" – JUnit FAQ.
JUnit is a collection of Java classes that makes
it easier to build and run unit tests
Do the Unit Testing Exercise, linked from the
schedule page
Finish for Homework if you do not finish here.
If you do finish this early, work on BigRational.

The next reading assignment.

ANGEL Quiz over Section.

Finish the in-class Unit Testing exercise if you didn't already.

Finish BigRational.

A couple more written problems.

Written problems and ANGEL quiz should be available this
afternoon.

	CSSE 220 Day 6
	CSSE 220 Day 6
	Your questions about …
	Inheritance recap:
	Inheritence details: recap
	One Other Use of inheritance
	Abstract class
	Interface
	java.util.Comparable interface
	Shape Hierarchy
	The Shape Interface
	AbstractShape class definition
	Circle class definition
	Rectangle class definition
	Square class definition
	Polymorphism
	Polymorphism is possible because of ...
	Shape demo part 1
	Shape demo part 2
	Interlude
	Try again
	Third try
	Fourth try
	The Answer
	Unit Testing and JUnit
	To do before Session 7

