
Brief Course Intro
Instructor Intro

Java Intro

Roll Call
A few administrative details(more next time)
Java vs. Python and C
A first Java program (calculate factorials)
Many factorial variations
File input/output
Primitive types, switch, ? :
A look at the homework

We will have them most days.
Help you interact with the lecture material.
Answers should be in the PowerPoint slides
and class discussion.
When I return them, they should be notes for
you.
A way for you to give me feedback, ask
questions, or let me discover that we need
more class time on a topic.

If I mispronounce your name, or
if you want to be called by another name than
what the Registrar gave me,
please tell me

While I am calling the roll, register your
attendance on ANGEL.
◦ I'll write the PIN on the board.
◦ Do this every class day.

Office (F-210)– I am there a lot, when I am
not in meetings.
◦ My Outlook Calendar is public, and linked from the

Syllabus.
◦ Sometimes in F217 helping students.
Phone – x8331
Email: anderson@rose-hulman.edu
csse220-staff@rose-hulman.edu will go to
me and the student assistants.
I want to help you (really!)
◦ and I also hired a small army of students to help.

mailto:anderson@rose-hulman.edu
mailto:csse220-staff@rose-hulman.edu

When you send me email:
◦ Please include 220 somewhere in your

subject line
◦ And also include a real subject line!
◦ Bad: When’s MineSweeper due?
◦ Bad: CSSE 220
◦ Good: CSSE 220: When’s MineSweeper

due?

Place and Times
◦ F-217
◦ Sunday-Thursday 7-9 PM.
◦ MTWR class periods 9 and 10 (and 7-8, we hope).
It's a great place to go to get help with
software setup, programming problems, or
course concepts.
Some students go there to work on their
homework. In addition to the lab assistant,
you may find other students to talk with.

More materials will be added.
More details will be filled in.
This is a new version of the course!
The posted schedule for the course is
preliminary and ambitious.
◦ There will be some adjustments as we go along.
I will usually post my PowerPoint slides after
each class meeting.
◦ If I ever forget, feel free to remind me.

And neither is this course.
Ask, evaluate, respond, comment!

Is it better to ask a question
and risk revealing your

ignorance, or to remain silent
and perpetuate your ignorance?

• Just the right topics for CSSE 220 and 230.
• Good mix of theory and practice, design and

implementation.
• Lots of interesting language issues. He talks about

Java, but applicable to other languages.
• Challenging problems, a good place to go as you

review for exams.
• Read it!
• Assignment for Day 2, read through Section 2.2.
• By Day 3 class, finish Chapter 2 and part of

Chapter 3.
• Take the ANGEL quiz each day.

In the textbook
In any of my materials.
Use the Bug Report Forum on ANGEL
More details in the Syllabus.

Even with statements like, “I have no idea
what you were just talking about.”
We want to be polite, but in this room
learning trumps politeness.
I do not intend for classroom discussions to
go over your head. Don't let them!

After you have had a chance to read the
syllabus.
◦ If you have questions on it, write them down so

you'll remember to ask about them in class.
◦ Same thing for reading from the textbook.
Also an introduction to me.

1/3 of you know some Java from taking CSSE 120
previous to Fall, 2007.
◦ Most of the Java intro will be review.
◦ But don't go to sleep:

a few things are likely to be new,
or be rusty in your mind because it has been a while since
you did Java programming.

2/3 of you know some Python and C.
◦ I assume that Java is unknown to you.
◦ We can move fast because of what you do know.
◦ I'll sometimes compare/contrast Java with Python or C.
◦ Folks from the other 1/3 should not need that anaolgy,

but if you wish you can learn a little about Python and/or
C in the process.

Classes and objects
Lists (but no special language syntax for
them like Python)
Standard ways of doing graphics, GUIs.
A huge library of classes/functions that make
many tasks easier.
A nicer Eclipse interface than C has.

Many similar primitive types: int, char, long,
float, double, ….
Static typing. Types of all variables must be
declared.
Similar syntax and semantics for if, for, while,
break, continue, function definitions.
Semicolons required mostly in the same places.
Execution begins with the main() function.
Comments: // and /* … */
Arrays are homogeneous, and size must be
declared at creation.

// Author: Claude Anderson. Nov 19, 2007.

public class Factorial_1_FirstJavaProgram {

public static final int MAX = 17;

/* Returns the factorial of n */
public static int factorial (int n) {

int product = 1;
int i;
for (i=2; i<=n; i++) {

product = product * i;
}
return product;

}

public static void main(String[] args) {
for (int i=0; i <= MAX; i++) {

System.out.print(i);
System.out.print("! = ");
System.out.println(factorial(i));

}
}

}

In Java, all variable and
function definitions are
inside class definitions.

Define a constant, MAX

Except for public static,
everything about this
function definition is
identical to C.

Note the function signature for
Java's main() .

We can declare the loop
counter in for loop header.

println terminates the
output line after printing;
print does not.

System.out is Java's standard
output stream. Note that
this is the variable called out
in the System class.

System.out is an object from the PrintStream
class. PrintStream has methods called print()
and println() .

// Author: Claude Anderson. Nov 19, 2007.

public class Factorial_1_FirstJavaProgram {

public static final int MAX = 17;

/* Returns the factorial of n */
public static int factorial (int n) {

int product = 1;
int i;
for (i=2; i<=n; i++) {

product = product * i;
}
return product;

}

public static void main(String[] args) {
for (int i=0; i <= MAX; i++) {

System.out.print(i);
System.out.print("! = ");
System.out.println(factorial(i));

}
}

}

0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 1932053504
14! = 1278945280
15! = 2004310016
16! = 2004189184
17! = -288522240

What happens when i gets to 14?

public class Factorial_2_WithLongs {
public static final int MAX = 21;

/* Return the factorial of n */
public static long factorial (int n) {
long product = 1;
for (int i=2; i<=n; i++)
product *= i;

return product;
}

public static void main(String[] args) {
for (int i=0; i <= MAX; i++)
System.out.println(i + "! = " + factorial(i));

}
}

6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 6227020800
14! = 87178291200
15! = 1307674368000
16! = 20922789888000
17! = 355687428096000
18! = 6402373705728000
19! = 121645100408832000
20! = 2432902008176640000
21! = -4249290049419214848

It still overflows,
but not as quickly.

A Java int is a 32-bit signed integer;
a long is a 64-bit signed integer.

If either operand is a String, + is the
concatenation operator.

If the other argument of + is not a string,
that argument is automatically converted
to a String (unlike in Python, where you
must explicitly call str() to do the
conversion).

static: Not associated
with any particular object.

import java.math.BigInteger;

public class Factorial_3_BigInteger {

public static final int MAX = 100;

/* Return the factorial of n */
public static BigInteger factorial(int n) {

BigInteger prod = BigInteger.ONE;
for (int i=2; i<=n; i++)

prod = prod.multiply(new BigInteger(i + ""));
return prod;

}

public static void main(String[] args) {
for (int i=0; i <= MAX; i++)

System.out.println(i + "! = " + factorial(i));
}

}

Java's BigInteger is like
Python's long type.
There is set limit on
how large a BigInteger
can be.
But calculations are less
efficient than with Java's
int or long types.

The BigInteger class is imported from the java.math package.

ONE is the
name of a
BigInteger
constant (that
represents the
integer 1).

new BigInteger(someString)
calls the BigInteger
constructor that takes a
String argument.

i+ "" is a quick and easy
way to get from a number
to its String representation.

multiply() is a method of
the BigInteger class that
takes a BigInteger object as
its argument, and returns
the product as a new
BigInteger object.

the BigInteger object returned by factorial() can be
automatically convertet to a String because BigInteger
has a toString() method.

final means that the
value of this variable can
never change. So it is
treated as a constant.

import java.math.BigInteger;

public class Factorial_4_Printf {

public static final int MAX = 25;

/* Return the factorial of n */
public static BigInteger factorial(int n) {

BigInteger prod = BigInteger.ONE;
for (int i=1; i<=n; i++)
prod = prod.multiply(

new BigInteger(i + ""));
return prod;

}

public static void main(String[] args) {
for (int i=0; i <= MAX; i++)

System.out.printf("%2d %30s\n", i,
factorial(i));

}
}

0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880
10 3628800
11 39916800
12 479001600
13 6227020800
14 87178291200
15 1307674368000
16 20922789888000
17 355687428096000
18 6402373705728000
19 121645100408832000
20 2432902008176640000
21 51090942171709440000
22 1124000727777607680000
23 25852016738884976640000
24 620448401733239439360000
25 15511210043330985984000000

The syntax and semantics of printf
in Java and C are identical for simple
output formats. The format strings
in Java and Python are also the same

import java.math.BigInteger;

public class Factorial_5_CalculateWidth {
public static final int MAX = 25;

public static BigInteger factorial(int n) {
BigInteger prod = BigInteger.ONE;
for (int i=1; i<=n; i++)
prod = prod.multiply(new BigInteger(i +""));
return prod;

}

public static void main(String[] args) {
int len = factorial(MAX).toString().length();

for (int i=0; i <= MAX; i++)
System.out.printf("%2d %" + len + "s\n" ,

i,
factorial(i));

}
}

0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880
10 3628800
11 39916800
12 479001600
13 6227020800
14 87178291200
15 1307674368000
16 20922789888000
17 355687428096000
18 6402373705728000
19 121645100408832000
20 2432902008176640000
21 51090942171709440000
22 1124000727777607680000
23 25852016738884976640000
24 620448401733239439360000
25 15511210043330985984000000

import java.math.BigInteger;
import java.util.Scanner;

public class Factorial_6_Scanner {
public static final int MAX = 25;

public static BigInteger factorial(int n) {
BigInteger prod = BigInteger.ONE;
for (int i=1; i<=n; i++)
prod = prod.multiply(new BigInteger(i +""));

return prod;
}

public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.print("Enter a nonnegative integer: ");
int n = sc.nextInt();
System.out.println(n + "! = " + factorial(n));

}
}

Import the Scanner
class from the java.util
package.

If we do not do the import, we can write
java.util.Scanner sc = new java.util.Scanner(System.in);

So import is a simple convenient shortcut

System.in is Java's
standard input
stream. Note that this
means the variable
called in in the System
class.

Other Scanner methods
include nextDouble(),
nextLine(), nextBoolean,
hasNextInt().
hasNextline().

import java.math.BigInteger;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.BufferedReader;

// omitted definition of the factorial method

public static void main(String[] args) {
BufferedReader in =

new BufferedReader(
new InputStreamReader(System.in));

String line = "";
System.out.print("Enter a positive integer: ");
try {

line = in.readLine();
} catch (IOException e) {

System.out.println("Could not read input");
}
int n = Integer.parseInt(line);
System.out.println(n + "! = " + factorial(n));

}
}

Think of this as the
"magic incantation" for
getting set up to read
from standard input.

readline() returns the
next line of input as a
String.

Since readline() could
generate an IO Exception,
the try/catch is required.

parseInt() takes a string that represents an integer
and returns the corresponding int value. It is
somewhat similar to Python's int() function.

Using the new Scanner
class is easier than this
approach. But you will
often see the old
approach in other
people's code (including
Mark Weiss' code).

Sometimes a program is not run standalone
or from within an Integrated Development
Environment.
Sometimes it is run as part of a script, fromr
a command-line, such as a UNIX/Linux shell
or a Windows DOS Prompt.
The args parameter of the Java main() method
allows us to access the command-line
arguments.
args[0] is the first command-line argument,
args[1] the second, etc.

You need to have the folder containing javac.exe
in your Path* variable:
If you have not already added it:
◦ Right-click My Computer, choose Properties
◦ Advanced, then Environment Variables
◦ Under System variables, click Path, then click Edit
◦ Click in Variable value field, then press the End key
◦ Add a semicolon, followed by the path to your Java bin

folder, which should be something like
C:\Program Files\Java\jdk1.6.0_01\bin

◦ Click OK several times to exit.

*Path is a list of folders in which the system looks for programs to run.

First, cd to the folder where the file lives.
javac ClassName.java compiles the file and
produces ClassName.class .
java ClassName executes that class.
java ClassName arg0 arg1 … executes that class
with the given command-line arguments.

C:\Documents and Settings\anderson\Desktop> javac Factorial_8_CommandLine.java
C:\Documents and Settings\anderson\Desktop> java Factorial_8_CommandLine 8
8!=40320
C:\Documents and Settings\anderson\Desktop> java Factorial_8_CommandLine 120
120!=6689502913449127057588118054090372586752746333138029810295671352301633557
244962989366874165271984981308157637893214090552534408589408121859898481114389
650005964960521256960000000000000000000000000000

import java.math.BigInteger;

public class Factorial_8_CommandLine {
public static final int MAX = 25;

public static BigInteger factorial(int n) {
BigInteger prod = BigInteger.ONE;
for (int i=1; i<=n; i++)
prod = prod.multiply(new BigInteger(i +""));

return prod;
}

public static void main(String[] args) {
int n = Integer.parseInt(args[0]);
System.out.println(n + "! = " + factorial(n));

}
} args[0] is the first

command-line argument.

Run as … Run …
On Main tab, make sure the class you want to
run is selected. If not, use Search …

Click Arguments tab.
Enter the Arguments under Program
Arguments.
Click Run.

import java.math.BigInteger;

public class Factorial_9_InputErrors {

public static BigInteger factorial(int n) {
if (n < 0)

throw new IllegalArgumentException();
BigInteger prod = BigInteger.ONE;
for (int i = 1; i <= n; i++)

prod = prod.multiply(new BigInteger(i + ""));
return prod;

}

public static void main(String[] args) {
try {

int n = Integer.parseInt(args[0]);
System.out.println(n + "! = " + factorial(n));

} catch (ArrayIndexOutOfBoundsException e) {
System.out.println("Command-line arg required");

} catch (NumberFormatException e) {
System.out.println("Argument must be an integer");

} catch (IllegalArgumentException e) {
System.out.println("Argumentcannot be negative");

}
}

}

If any exception
gets thrown by
the code in the try
clause, the catch
clauses are tested
in order to find
the first one that
matches the
actual exception
type.

If none match, the
exception is
thrown back to
whatever method
called this one.

If it is never
caught, the
program crashes.

import java.math.BigInteger;

public class Factorial_10_Recursive {
public static final int MAX = 30;

/* Return the factorial of n */
public static BigInteger factorial(int n) {

if (n < 0)
throw new IllegalArgumentException();

if (n == 0)
return BigInteger.ONE;

return new BigInteger(n+ "").multiply(factorial(n-1));
}

public static void main(String[] args) {
for (int i=0; i <= MAX; i++)

System.out.println(i + "! = " + factorial(i));
}

}

Recursive factorial definition:
n! = 1 if n = 0
n! = (n-1)! n if n>0

Recursive basically means:
The method calls itself.

import java.math.BigInteger;

public class Factorial_11_Caching {
public static final int MAX = 30;
static int count = 0; // How many values have we cached so far?
static BigInteger [] vals = new BigInteger[MAX+1]; // the cache
static { vals[0] = BigInteger.ONE; } // Static initializer

/* Return the factorial of n */
public static BigInteger factorial(int n) {

if (n < 0 || n > MAX)
throw new IllegalArgumentException();

if (n <= count) // If we have already computed it …
return vals[n];

BigInteger val =
new BigInteger(n+ "").multiply(factorial(n-1));

vals[n] = val; // Cache the computed value before returning it
return val;

}
// Code for main()omitted. Same as in previous example.

}

Store previously-computed
values in an array called vals

import java.util.*;
import java.io.*;

public class FileIOTest {
/* Copy an input file to an output file, changing all letters to uppercase.

This approach can be used for input processing in almost any program. */
public static void main(String[] args) {

String inputFileName = "sampleFile.txt";
String outputFileName = "upperCasedFile.txt";
try {

Scanner sc = new Scanner(new File(inputFileName));
PrintWriter out = new PrintWriter(new FileWriter(outputFileName));
while (sc.hasNextLine()){ // process one line

String line = sc.nextLine();
line = line.toUpperCase();
for (int i= 0; i< line.length(); i++)
// normally we might do something with each character in the line.

out.print(line.charAt(i));
out.println();

}
out.close();

} catch (IOException e) {
e.printStackTrace();

}
}

}

import java.util.Scanner;
import java.io.*;

public class TryFileInputOutput {

public static void main(String[] args) {
String inFileName=null ,outFileName = "outFile.txt";
Scanner fileScanner;
PrintWriter out;

try {
Scanner sc = new Scanner(System.in);
while (true) // until we get a valid file.
try {
System.out.print("Enter input file name: ");
inFileName = sc.nextLine();
fileScanner = new Scanner(new File(inFileName));
break; // we have a valid file, so exit the loop.

} catch(FileNotFoundException e) {
System.out.println("Did not find file " + inFileName + ". Try again!");

}
out = new PrintWriter(new FileWriter(outFileName));
while (fileScanner.hasNextLine()){ // process one line

String line = fileScanner.nextLine();
line = line.toUpperCase();
for (int i=0; i<line.length(); i++)

out.print(line.charAt(i)); // process each char on the line
out.println();

}
out.close();
fileScanner.close();
System.out.println("Done!");

} catch (IOException e) {
e.printStackTrace();

}

Essentially the
same as before

Essentially
the same
as before

Keep looping until
user enters the name
of an input file that
we can actually
open.

Copyright © 2006 Pearson
Addison-Wesley. All rights
reserved. 1-36

Copyright © 2006 Pearson
Addison-Wesley. All rights
reserved. 1-37

Copyright © 2006 Pearson
Addison-Wesley. All rights
reserved. 1-38

Read the syllabus.
◦ You can ask questions in the next class meeting.
Read Weiss chapter 1 and sections 2.1-2.2.
Take the ANGEL quiz on that material.
Install Subclipse if you do not already have it.
Write a short Java program (two static
methods)
Turn in that program on AFS.
Details are in the hw01.html document.

	CSSE 220 Day 1
	Agenda
	Daily Quizzes
	Roll Call
	Contacting me
	Email subject lines
	Student Assistant Lab hours
	A quick tour of the online course materials
	Programming is not a spectator sport
	Weiss Textbook
	Bonus points for reporting bugs
	Feel free to interrupt during class discussions
	More Administrivia Tomorrow
	Two Audiences for the Java Intro
	Things Java Has in Common with Python
	Things Java Has in Common with C
	A First Java Program
	Run the First Java Program
	Larger Factorials: the long type
	Huge Factorials With BigInteger
	Output in Columns: Fixed Width
	Output in Columns: Calculated Width
	Interlude
	Ask user for value (new way)
	Ask user for value (old way)
	Command-line arguments
	Add Java to your Windows Path
	Compile and Run a Java Program From the Command line
	Factorial with command-line argument
	Command-line arguments in Eclipse
	What if a user types something wrong?
	Factorial recursive
	Speed up Factorial Calculation with Caching
	File Input/Output
	More File Input/Output
	Primitive types
	Java switch statement
	Ternary conditional operator ? :
	To do for tomorrow

