
What	to	do	when	you	get	a
run-time	error	message

1. Look	at	the	console	output.

2. Find	the	line	that	broke.

3. Click	on	its	blue	link.	More	precisely,	click	on	
the	lowest	blue	link	that	leads	to	your code.

4. Decipher	the	red	error	message	that	
appeared	at	the	bottom	of	the	console	
message.

• Oftentimes,	you	will	see	your	mistake	at	
this	point.		If	so,	fix	and	re-test.

• If	not,	use	the	Traceback (stack	trace)	as	
needed	to	further	track	down	your	
problem.		You	will	probably	also	use	
PRINT as	described	in	the	next	video.

The	next	
slides	cover	
each	of	these	
points.

1.		Look	at	the	console	output.

3.		Click	on	its	blue	link.2.		Find	the	line	that	broke.
It	will	be	in	red just	below	the	BOTTOM blue	link.
Note:		Sometimes	the	output from	the	problem	(from	print statements)	
gets	intermixed	with	the	Traceback and	error	message.		The	latter	are	
always	in	red,	and	your	output	(from	printing)	will	always	be	in	black.		
See	the	next	slide	for	an	example	of	the	intermixing	that	may	occur.

In	this	example,	the	output	appeared	AFTER	the	Traceback and	error	
message,	but	in	other	cases	it	may	appear	BEFORE	the	Traceback and	
error	message	or	even	intermingled	with	the	Traceback!

More	precisely,	click	on	the	
lowest	blue	link	that	leads	
to	your code.		See	the	example	
on	a	slide	coming	up.

Traceback starts	here	...

…	and	Traceback continues	here.

But	the	output	from	print appears	
both	before	the	Traceback …

…	and	in	the	middle of	the	Traceback.

In	general,	the	output	from	print
might	appear	anywhere:		before	
the	Traceback,	inside	it,	after	it,	or	
some	combination	of	all	three.

Just	look	for	the	red and	blue for	
the	Traceback and	error	message.

An	example	showing	the	output	(from	print)	intermixed	
with	the	Traceback and	error	message

2.		Find	the	line	that	broke.		In	red just	below	the	BOTTOM blue	link.

3.		Click	on	its	blue	link. More	precisely,	click	on	the	lowest	blue	link	that	
leads	to	your code.		See	explanation	in	above	box.

Important:

The	line	that	broke	will	always	the	at	the	BOTTOM	of	the	Traceback.		The	error	message	will	always	follow	that	line.
But	sometimes,	as	in	this	example,	that	line	is	part	of	a	library	module	like	rosegraphics.

In	that	case,	you	want	to	find	the	last	place	before	the	code	broke	that	was	in	YOUR code.		So	you	work	your	way	BACK	
through	the	Traceback (that	is,	UP	in	the	list)	until	you	find	a	line	that	is	in	YOUR	code.		I	have	circled	that	line	in	the	above.

How	to	select	the	blue link	upon	which	to	click
when	your	code	breaks	inside	a	library	like	rosegraphics

What	to	do	
when	you	get	a	
run-time	error	

message

1. Look	at	the	console	output.

2. Find	the	line	that	broke.

3. Click	on	its	blue	link.	More	precisely,	
click	on	the	lowest	blue	link	that	
leads	to	your code.

Deciphering	those	messages	is	very	perplexing	at	first,	but	very	easy	
once	you	“learn	the	lingo.”		The	next	slides	decipher	some	example	
error	messages	that	you	may	encounter.		Refer	back	to	the	following	
slides	if	you	get	an	error	message	that	you	cannot	decipher!

4. Decipher	the	red	error	message	 that	appeared	at	the	
bottom	of	the	console	message.
• Oftentimes,	you	will	see	your	mistake	at	this	point.		If	so,	fix	and	re-test.

• If	not,	use	the	Traceback (stack	trace)	as	needed	to	further	track	down	your	
problem.		You	will	probably	also	use	PRINT as	described	in	the	next	video.

Exception: Could not place the shape on the given window.

Did you accidentally render a closed window?

Example	error	message,	with	a	key	phrase	circled:
raise Exception(message) from None

Exception: Could not place the shape on the given window.
Did you accidentally render a closed window?

Example	code
that	produced
the	error	message:

Explanation:
• “render	a	closed	window”	means	that	the	window	in			window.render() is	currently	closed.		Rosegraphics

does	not	allow	you	to	draw	on	a	window	once	it	is	closed	(reasonably	enough).
• So	you	look	for	a	statement	that	might	have	(erroneously)	closed	the	window.		That	statement	is	obvious	in	this	

example:		it	is	the	line	that	immediately	follows	the			window.render() line:
window.close_on_mouse_click()

• It	so	happens	that	in	this	(and	many	other)	problems,	the	green	specification	of	the	function	did	NOT	ask	you	to	close	the	
window.		So	it	is	wrong to	close	the	window	in	the	function	– functions	should	do	no	“side	effects”	beyond	those	demanded	
by	the	specification.		Instead,	the	window	should	be	closed	in	the	testing code	at	the	appropriate	place.

The	error	message	was	generated	when	the	function	was	called	a	second	time	on	the	window.		The	student’s	code	above	
wrongly	closed	the	window,	so	the	code	broke	on	that	second	call	to	the	function.		Note	that	the	mistake	did	NOT	occur	on	
the	line	that	broke	– sometimes,	like	here,	you	have	to	do	detective	work	to	find	the	actual	source	of	the	error.

The	above	error	message	was	
generated	by	a	statement	in	
rosegraphics.		The	line	in	the	
student’s	code	that	led	to	the	
error	message	is	the	line	
written	in	red.

oval = rg.Ellipse(rectangle.corner_1,
rectangle.corner_2)

oval.attach_to(window)
window.render()

window.close_on_mouse_click()

AttributeError: 'Blah' object has no attribute 'foo'

Example	error	message,	with	a	key	phrase	circled:
AttributeError: 'int' object has no attribute 'x'

Example	code	that	produced	the	error	message:
super().__init__(Point((corner_2.x + corner_1.x) / 2,

oval = rg.Ellipse(rectangle.corner_1.x, rectangle.corner_2.y)

Explanation:

• This	message	has	an	unambiguous	and	very	helpful	meaning,	namely:	
There	is	some	object	that	is	of	type		int and	that	object	has	a			.x after	it.	

• You	don’t	necessarily	why	the	object	is	of	type		int,	nor	whether	it	should	or	shouldn’t	have	a		.x after	it,	but	
you	definitely	know	that	it	is	of	type			int and	it	has	a			.x after	it	and	that	that	combination	is	no	good.		
(Integers	do	not	have	an	“x”	attribute.)

• Usually	that	is	enough	of	a	hint	to	spot	the	error.		In	this	case,	the	red	code	makes	it	clear	that	the	object	is	
either			corner_2.x or			corner_1.x,	since	they	are	the	only	two	names	with	a			.x after	them.		Presumably	
a	corner	should	be	an	rg.Point (so	having	a			.x attribute	makes	sense),	but	apparently	one	or	both	of	these	
corners	are			int objects,	not			rg.Point objects.

• So	you	look	at	your	code	and	see	if	perhaps	you	gave	the			rg.Ellipse constructor	arguments	of	the	wrong	
type.		Yep!		An			rg.Ellipse needs	two			rg.Point objects,	but	this	code	gives	an	x (which	is	an	int)	and	a	y
(also	an	int).		The	author	of	the	code	perhaps	intended	to	write:

oval = rg.Ellipse(rectangle.corner_1, rectangle.corner_2)

The	error	message	(in	red)	
was	generated	by	a	
statement	in	rosegraphics,	
shown	here	(also	in	red).		

The	line	in	the	student’s	code	that	led	to	the	
error	message	is	the	line	shown	here,	in	black.

Example	error	message,	with	a	key	phrase	circled:
TypeError: 'tuple' object does not support item assignment

Example	code	that	produced	the	error	message:
list_of_integers[k] = list_of_integers[last - k]

Explanation:
• “Assignment”	means	an			= sign.
• “Item	assignment”	means	that	the	assignment	is	to	an	item	in	a	sequence,	as	in

blah[k] = ...
• “Tuple	object”	means	an	object	that	is	a	tuple,	as	in	(3, 29, 1, 4).
• So	this	message	is	saying	that	you	cannot	assign	a	value	to	an	item	in	a	TUPLE.		Hopefully	that	

triggers	your	memory	(or	you	look	up	in	the	videos	et	al)	that	tuples	are	immutable.		So	the	
problem	is	that	you	are	trying	to	mutate	a	tuple.
So	in	the	code	above,	it	looks	like			LIST_of_integers is	a	TUPLE	(despite	its	name)	when	it	
should	be	a	LIST.		You	can	verify	this	by	putting	a	PRINT	statement	just	before	the	line	that	
broke	and	re-running:

print(list_of_integers)
Ultimately,	this	might	be	an	error	in	the	testing	code	(inadventently sending	a	TUPLE	where	
the	function	demands	a	LIST).

TypeError:

BLAH object does not support item assignment

• I	will	be	adding	more	examples	of	error	
messages	(and	what	they	mean)	over	the	next	
couple	of	days.

