
What to do when
a test fails

1. Avoid the temptation to just try things (fiddling with your code)!

2. Solve the test case that failed by hand.

3. Put print statements that print the values of relevant variables at relevant places, in
hopes of (per the following steps) discovering when the program first went wrong.

4. Run the program. Examine the output, line by line. Find the first line where what you
expected to be printed is different from what actually was printed.

• If all the output is now what you expected:
• If the code now passes the test case, you are done!
• Otherwise, return to Step 3 and add additional print statements (and possibly

remove some existing ones) to discover when the program first went wrong.

5. Figure out why the output is different than you expected. That is, identify the line(s) of
code where the code does not do what you wanted it to do.

6. Correct the mistake(s) that the previous step uncovered. That is, make the code do
what you want it to do.

7. Go back to Step 4.

The next slides cover each of the
steps below, via a concrete example.

What to do when a test fails: a solved example

def problem1a(list_of_integers):
 left_index = 0
 right_index = len(list_of_integers)
 for k in range(len(list_of_integers)):
 if list_of_integers[left_index] > list_of_integers[right_index]:
 list_of_integers[left_index] = list_of_integers[right_index]
 list_of_integers[right_index] = list_of_integers[left_index]

MUTATEs the given list of integers to become partially sorted, as follows:
 -- Compares the first (beginning) and last items in the list.
 If the first item is greater than the last item, this function swaps those two items.
 -- Compares the second and second-to-last items in the list. If the second item is greater
 than the second-to-last item, this function swaps those two items.
 -- And so forth.

For example, if the given list of integers is:
 [50, 77, 40, 3, 90, 10, 30, 80]
then after this function call that list of integers is mutated into:
 [50, 30, 10, 3, 90, 40, 77, 80]
because 50 is compared to 80,
then 77 is compared to 30 (swap them!),
then 40 is compared to 10 (swap them!),
then 3 is compared to 90. Here (below) is a solution with multiple

errors. The next slides work through the
debugging steps one might do to locate
and fix those mistakes.

What to do when a test
fails: a solved example

def problem1a(list_of_integers):
 left_index = 0
 right_index = len(list_of_integers)
 for k in range(len(list_of_integers)):
 if list_of_integers[left_index] > list_of_integers[right_index]:
 list_of_integers[left_index] = list_of_integers[right_index]
 list_of_integers[right_index] = list_of_integers[left_index]

For example, if the given list of integers is:
 [50, 77, 40, 3, 90, 10, 30, 80]
then after this function call
that list of integers is mutated into:
 [50, 30, 10, 3, 90, 40, 77, 80]
because 50 is compared to 80,
then 77 is compared to 30 (swap them!),
then 40 is compared to 10 (swap them!),
then 3 is compared to 90.

Here (above) is a solution with multiple errors. When we run the program
for the first time, the code breaks, giving the message in red below.

File "C:\EclipseWorkspaces\csse120\Session13_Test2Practice_mutchler\src\problem1.py", line 98,
in problem1a
 if list_of_integers[left_index] > list_of_integers[right_index]:
IndexError: list index out of range

Per a previous video, the message is helpful: We know that left_index or
right_index is incorrect. So we put a print statement that prints them, along with a
print statement that prints the argument list_of_integers for our test case.
(Continues on next slide.)

What to do when a test
fails: a solved example

def problem1a(list_of_integers):
 left_index = 0
 right_index = len(list_of_integers)

 print(list_of_integers)
 print(left_index, right_index)

 for k in range(len(list_of_integers)):
 if list_of_integers[left_index] > list_of_integers[right_index]:
 list_of_integers[left_index] = list_of_integers[right_index]
 list_of_integers[right_index] = list_of_integers[left_index]

For example, if the given list of integers is:
 [50, 77, 40, 3, 90, 10, 30, 80]
then after this function call
that list of integers is mutated into:
 [50, 30, 10, 3, 90, 40, 77, 80]
because 50 is compared to 80,
then 77 is compared to 30 (swap them!),
then 40 is compared to 10 (swap them!),
then 3 is compared to 90.

Here (to the left) is a solution with multiple errors.
When we run the program for the first time, the code
breaks, giving the message on the previous slide (in red).

In response, (per the previous slide)
we put print statements (shown in
purple) that prints those variables
along with the list_of_integers
(which is our test case).

--
Testing the problem1a function:
--

Before the mutation: [50, 77, 40, 3, 90, 10, 30, 80]
[50, 77, 40, 3, 90, 10, 30, 80]
0 8 I expected the test list to be just as what is printed – good!

I expected left_index to be 0, and 0 is printed – good!
I expected right_index to be 7 (for the test list), but 8 is printed –
looks like I have identified the place where my code did not work as I
expected, good! (Continues on next slide.)

The output from the print
statements is shown above.

What to do when a test
fails: a solved example

def problem1a(list_of_integers):
 left_index = 0

 right_index = len(list_of_integers) - 1

 print(list_of_integers)
 print(left_index, right_index)
 for k in range(len(list_of_integers)):
 if list_of_integers[left_index] > list_of_integers[right_index]:
 list_of_integers[left_index] = list_of_integers[right_index]
 list_of_integers[right_index] = list_of_integers[left_index]

For example, if the given list of integers is:
 [50, 77, 40, 3, 90, 10, 30, 80]
then after this function call
that list of integers is mutated into:
 [50, 30, 10, 3, 90, 40, 77, 80]
because 50 is compared to 80,
then 77 is compared to 30 (swap them!),
then 40 is compared to 10 (swap them!),
then 3 is compared to 90.

Here (to the left) is a solution with multiple errors.
On the previous slide, we determined that the initial
value for right_index was NOT what I expected:
it was 8, but I expected 7 on the test list.

That woke me up to my first error – right_index should start at
len(list_of_integers) – 1, not len(list_of_integers).

Before the mutation: [50, 77, 40, 3, 90, 10, 30, 80]
[50, 77, 40, 3, 90, 10, 30, 80]
0 7
After the mutation: [50, 77, 40, 3, 90, 10, 30, 80]
The above should be: [50, 30, 10, 3, 90, 40, 77, 80]
FAILED the test!

This time the code does NOT break
(good!). It prints the expected value for
right_index (7) – good!

However, the code now fails the test, as
shown to the left. So now I continue the
debugging, looking for a second mistake.
(Continues on next slide.)

So I made the correction and have
shown the corrected line in purple in
the code above.

I run the program again and this time I get the output shown below.

What to do when a test
fails: a solved example

def problem1a(list_of_integers):
 left_index = 0
 right_index = len(list_of_integers) - 1
 print(list_of_integers)
 print(left_index, right_index)
 for k in range(len(list_of_integers)):
 if list_of_integers[left_index] > list_of_integers[right_index]:
 list_of_integers[left_index] = list_of_integers[right_index]
 list_of_integers[left_index] = list_of_integers[right_index]

For example, if the given list of integers is:
 [50, 77, 40, 3, 90, 10, 30, 80]
then after this function call
that list of integers is mutated into:
 [50, 30, 10, 3, 90, 40, 77, 80]
because 50 is compared to 80,
then 77 is compared to 30 (swap them!),
then 40 is compared to 10 (swap them!),
then 3 is compared to 90.

Here (to the left) is a solution with multiple errors. I have
fixed one error (the correction is shown in purple), but
now the code fails the test, as shown in the output below.

Now I need to put additional print
statements, this time INSIDE the loop.
Once again, I am trying to locate the
first place in the code’s execution
where what is printed is NOT what I
expected to be printed.

Before the mutation: [50, 77, 40, 3, 90, 10, 30, 80]
[50, 77, 40, 3, 90, 10, 30, 80]
0 7
After the mutation: [50, 77, 40, 3, 90, 10, 30, 80]
The above should be: [50, 30, 10, 3, 90, 40, 77, 80]
FAILED the test!

Inside the loop, I want to print just about everything, since I do not know what is going wrong.
So inside the loop, before the IF statement, I put:

 print(k, left_index, right_index, list_of_integers[left_index],
 list_of_integers[right_index])

(Continues on next slide.)

What to do when a test
fails: a solved example

def problem1a(list_of_integers):

 left_index = 0
 right_index = len(list_of_integers) - 1
 print(list_of_integers)
 print(left_index, right_index)

 for k in range(len(list_of_integers)):

 print(k, left_index, right_index, list_of_integers[left_index],
 list_of_integers[right_index])

 if list_of_integers[left_index] > list_of_integers[right_index]:
 list_of_integers[left_index] = list_of_integers[right_index]
 list_of_integers[right_index] = list_of_integers[left_index]

For example, if the given list of integers is:
 [50, 77, 40, 3, 90, 10, 30, 80]
then after this function call
that list of integers is mutated into:
 [50, 30, 10, 3, 90, 40, 77, 80]
because 50 is compared to 80,
then 77 is compared to 30 (swap them!),
then 40 is compared to 10 (swap them!),
then 3 is compared to 90. Here (to the left) is a

solution with multiple
errors. I have fixed one
error, but the code now
fails the test. In response,
I added another print
statement, shown in
purple.

Note that I used a single
print statement rather
than multiple ones. That
makes the output easier to
read when it is in a loop – I
get one line of output for
each iteration of the loop.

I run the program again. The relevant output is shown below.

0 7
0 0 7 50 80
1 0 7 50 80
2 0 7 50 80
3 0 7 50 80
4 0 7 50 80
5 0 7 50 80
6 0 7 50 80
7 0 7 50 80

Yikes! Although k is changing as expected (it is the left column of
numbers), the other variables are not changing at all as the loop continues!

Again, I have found a place where what is printed is NOT what I expected to
be printed. Again, I ask myself: Why did my code behave in this
unexpected way? (Continues on next slide.)

What to do when a test
fails: a solved example

0 7
0 0 7 50 80
1 0 7 50 80
2 0 7 50 80
3 0 7 50 80
4 0 7 50 80
5 0 7 50 80
6 0 7 50 80
7 0 7 50 80

Per the previous slide, I am surprised to see that although k is changing as
expected, the other variables are not changing at all as the loop continues!

def problem1a(list_of_integers):

 left_index = 0
 right_index = len(list_of_integers) - 1
 print(list_of_integers)
 print(left_index, right_index)

 for k in range(len(list_of_integers)):

 print(k, left_index, right_index, list_of_integers[left_index],
 list_of_integers[right_index])

 if list_of_integers[left_index] > list_of_integers[right_index]:
 list_of_integers[left_index] = list_of_integers[right_index]
 list_of_integers[right_index] = list_of_integers[left_index]

For example, if the given list of integers is:
 [50, 77, 40, 3, 90, 10, 30, 80]
then after this function call
that list of integers is mutated into:
 [50, 30, 10, 3, 90, 40, 77, 80]
because 50 is compared to 80,
then 77 is compared to 30 (swap them!),
then 40 is compared to 10 (swap them!),
then 3 is compared to 90.

Here (to the left) is a
solution with multiple
errors. I have fixed one
error, but the code now
fails the test. In response,
I added another print
statement, shown in
purple.

The relevant output when
I ran with that new print
statement is shown below.

Again, I have found a place where what is printed is NOT what I expected to be
printed. Again, I ask myself: Why did my code behave in this unexpected way?

Ah! I forgot to make the index variables change! I meant to include:
 left_index = left_index + 1
 right_index = right_index – 1
at the end of the loop. So I add those statements and run the program again.
(Continues on next slide.)

What to do when a test
fails: a solved example

def problem1a(list_of_integers):

 left_index = 0
 right_index = len(list_of_integers) - 1
 print(list_of_integers)
 print(left_index, right_index)

 for k in range(len(list_of_integers)):

 print(k, left_index, right_index, list_of_integers[left_index],
 list_of_integers[right_index])

 if list_of_integers[left_index] > list_of_integers[right_index]:
 list_of_integers[left_index] = list_of_integers[right_index]
 list_of_integers[right_index] = list_of_integers[left_index]
 left_index = left_index + 1
 right_index = right_index - 1

For example, if the given list of integers is:
 [50, 77, 40, 3, 90, 10, 30, 80]
then after this function call
that list of integers is mutated into:
 [50, 30, 10, 3, 90, 40, 77, 80]
because 50 is compared to 80,
then 77 is compared to 30 (swap them!),
then 40 is compared to 10 (swap them!),
then 3 is compared to 90.

Here (to the left) is a
solution with multiple
errors. I have fixed two
errors, but the code still
fails the test. Here
(below and to the left) is
the relevant output
when I run after adding
the two lines shown in
purple.

0 7
0 0 7 50 80
1 1 6 77 30
2 2 5 40 10
3 3 4 3 90
4 4 3 90 3
5 5 2 10 10
6 6 1 30 30
7 7 0 80 50
After the mutation: [50, 30, 10, 3, 3, 10, 30, 50]
The above should be: [50, 30, 10, 3, 90, 40, 77, 80] FAILED the test!

I re-examine the output. Now both left_index and
right_index are behaving as I expected them to do, as shown by
the purple circle in the output. Also, I see that I am comparing the
right items for the first several iterations: first 50 and 80, then 77
and 30, and so forth, as shown by the green circle.

But the last three iterations (circled in red) are NOT what I expected. And the test failed –
the final state of the list has bogus numbers in it (again circled in red). So I again add a print
statement, this time inside the IF statement, to try to figure out what is going on.

(Continues on next slide.)

0 7
0 0 7 50 80
1 1 6 77 30
1 [50, 77, 40, 3, 90, 10, 30, 80]
1 [50, 30, 40, 3, 90, 10, 30, 80]
 ...

What to do when a test
fails: a solved example

def problem1a(list_of_integers):
 left_index = 0
 right_index = len(list_of_integers) - 1
 print(list_of_integers)
 print(left_index, right_index)

 for k in range(len(list_of_integers)):

 print(k, left_index, right_index, list_of_integers[left_index],
 list_of_integers[right_index])

 if list_of_integers[left_index] > list_of_integers[right_index]:
 print(k, list_of_integers)
 list_of_integers[left_index] = list_of_integers[right_index]
 list_of_integers[right_index] = list_of_integers[left_index]
 print(k, list_of_integers)
 left_index = left_index + 1

 right_index = right_index - 1

For example, if the given list of integers is:
 [50, 77, 40, 3, 90, 10, 30, 80]
then after this function call
that list of integers is mutated into:
 [50, 30, 10, 3, 90, 40, 77, 80]
because 50 is compared to 80,
then 77 is compared to 30 (swap them!),
then 40 is compared to 10 (swap them!),
then 3 is compared to 90.

0 7
0 0 7 50 80
1 1 6 77 30
1 [50, 77, 40, 3, 90, 10, 30, 80]
1 [50, 30, 40, 3, 90, 10, 30, 80]
2 2 5 40 10
2 [50, 30, 40, 3, 90, 10, 30, 80]
2 [50, 30, 10, 3, 90, 10, 30, 80]
3 3 4 3 90
4 4 3 90 3
4 [50, 30, 10, 3, 90, 10, 30, 80]
4 [50, 30, 10, 3, 3, 10, 30, 80]
5 5 2 10 10
6 6 1 30 30
7 7 0 80 50
7 [50, 30, 10, 3, 3, 10, 30, 80]
7 [50, 30, 10, 3, 3, 10, 30, 50]
After the mutation: [50, 30, 10, 3, 3, 10, 30, 50]
The above should be: [50, 30, 10, 3, 90, 40, 77,
80]
FAILED the test!

Here (to the left) is a
solution with multiple
errors. I have fixed two
errors, but the code still
fails the test. Here
(below and to the left) is
the relevant output
when I run after adding
the two lines shown in
purple. (The full output is
shown directly below, in
smaller print.)

When k is 0, the code
correctly compares 50
and 80 and correctly
determines NOT to swap
them. When k is 1, the
code correctly compares
77 and 30 and correctly
determines to swap them. (Continues on next slide.)

I put the new print statements
(shown in purple) both before and
after the “swap” code, and I printed
k (so that I know the iteration) as
well as the entire list (because
something is going wrong with it).

What to do when a test
fails: a solved example

def problem1a(list_of_integers):
 left_index = 0
 right_index = len(list_of_integers) - 1
 print(list_of_integers)
 print(left_index, right_index)

 for k in range(len(list_of_integers)):

 print(k, left_index, right_index, list_of_integers[left_index],
 list_of_integers[right_index])

 if list_of_integers[left_index] > list_of_integers[right_index]:
 print(k, list_of_integers)
 list_of_integers[left_index] = list_of_integers[right_index]
 list_of_integers[right_index] = list_of_integers[left_index]
 print(k, list_of_integers)
 left_index = left_index + 1

 right_index = right_index - 1

For example, if the given list of integers is:
 [50, 77, 40, 3, 90, 10, 30, 80]
then after this function call
that list of integers is mutated into:
 [50, 30, 10, 3, 90, 40, 77, 80]
because 50 is compared to 80,
then 77 is compared to 30 (swap them!),
then 40 is compared to 10 (swap them!),
then 3 is compared to 90.

Here (to the left) is a
solution with multiple
errors. I have fixed two
errors, but the code still
fails the test. Here (below)
is the relevant output when
I run after adding the two
lines shown in purple. (The
full output is shown on the
previous slide.)

When k is 0, the code correctly compares 50 and 80 and correctly
determines NOT to swap them. When k is 1, the code correctly
compares 77 and 30 and correctly determines to swap them.

0 7
0 0 7 50 80
1 1 6 77 30
1 [50, 77, 40, 3, 90, 10, 30, 80]
1 [50, 30, 40, 3, 90, 10, 30, 80]
 ...

But when the “swap” of 77 and 30 occurs., the list at index 1 becomes 30 (good!) but I expected the list at index 6 to
become 77. The print statement says that it remains 30 (circled in red in the output). So I run the code “by hand”:
 list_of_integers[left_index] = list_of_integers[right_index] list at 1 becomes value of list at 6, which is 30. Good!
 list_of_integers[right_index] = list_of_integers[left_index] list at 6 becomes value of list at 1, which is now 30. Oops!

What to do when a test
fails: a solved example

def problem1a(list_of_integers):
 left_index = 0
 right_index = len(list_of_integers) - 1
 print(list_of_integers)
 print(left_index, right_index)

 for k in range(len(list_of_integers)):

 print(k, left_index, right_index, list_of_integers[left_index],
 list_of_integers[right_index])

 if list_of_integers[left_index] > list_of_integers[right_index]:
 print(k, list_of_integers)
 list_of_integers[left_index] = list_of_integers[right_index]
 list_of_integers[right_index] = list_of_integers[left_index]
 print(k, list_of_integers)
 left_index = left_index + 1

 right_index = right_index - 1

For example, if the given list of integers is:
 [50, 77, 40, 3, 90, 10, 30, 80]
then after this function call
that list of integers is mutated into:
 [50, 30, 10, 3, 90, 40, 77, 80]
because 50 is compared to 80,
then 77 is compared to 30 (swap them!),
then 40 is compared to 10 (swap them!),
then 3 is compared to 90.

Here (to the left) is a
solution with multiple
errors. I have fixed two
errors, but the code still
fails the test. Here (below)
is the relevant output when
I run after adding the two
lines shown in purple. (The
full output is shown on a
previous slide.)

Per the analysis on the previous slide, I see that
my “swap” technique does not work. So I google
for “swap variables” and learn that the right way
to swap variables A and B is per this pattern:
 temp = A
 A = B
 B = temp

0 7
0 0 7 50 80
1 1 6 77 30
1 [50, 77, 40, 3, 90, 10, 30, 80]
1 [50, 30, 40, 3, 90, 10, 30, 80]
 ...

I then correct my code to do the swap correctly and
run the program again… (Continues on next slide.)

What to do when a test
fails: a solved example

def problem1a(list_of_integers):
 left_index = 0
 right_index = len(list_of_integers) - 1
 print(list_of_integers)
 print(left_index, right_index)

 for k in range(len(list_of_integers)):

 print(k, left_index, right_index, list_of_integers[left_index],
 list_of_integers[right_index])

 if list_of_integers[left_index] > list_of_integers[right_index]:
 print(k, list_of_integers)
 temp = list_of_integers[left_index]
 list_of_integers[left_index] = list_of_integers[right_index]
 list_of_integers[right_index] = temp
 print(k, list_of_integers)
 left_index = left_index + 1

 right_index = right_index - 1

For example, if the given list of integers is:
 [50, 77, 40, 3, 90, 10, 30, 80]
then after this function call
that list of integers is mutated into:
 [50, 30, 10, 3, 90, 40, 77, 80]
because 50 is compared to 80,
then 77 is compared to 30 (swap them!),
then 40 is compared to 10 (swap them!),
then 3 is compared to 90.

When k is 0 (see first blue circle in output), the code correctly does
NOT swap 50 and 80. When k is 1, the code correctly and successfully
swaps the 77 and 30 (see the first set of green and purple circles).
When k is 2, the code correctly and successfully swaps 40 and 10 (next
set of green/purple circles). When k is 3, the code correctly does NOT
swap 3 and 90 (see second blue circle). But … (Continues on next slide.)

0 7
0 0 7 50 80
1 1 6 77 30
1 [50, 77, 40, 3, 90, 10, 30, 80]
1 [50, 30, 40, 3, 90, 10, 77, 80]
2 2 5 40 10
2 [50, 30, 40, 3, 90, 10, 77, 80]
2 [50, 30, 10, 3, 90, 40, 77, 80]
3 3 4 3 90
4 4 3 90 3
4 [50, 30, 10, 3, 90, 40, 77, 80]
4 [50, 30, 10, 90, 3, 40, 77, 80]

The correct swap (per the previous slide)
is shown in purple in the code below.

When I run the program
with the correct swap, I get
the output shown below. (I
have shown the output only to
the relevant point.)

What to do when a test
fails: a solved example

def problem1a(list_of_integers):
 left_index = 0
 right_index = len(list_of_integers) - 1
 print(list_of_integers)
 print(left_index, right_index)

 for k in range(len(list_of_integers)):

 print(k, left_index, right_index, list_of_integers[left_index],
 list_of_integers[right_index])

 if list_of_integers[left_index] > list_of_integers[right_index]:
 print(k, list_of_integers)
 temp = list_of_integers[left_index]
 list_of_integers[left_index] = list_of_integers[right_index]
 list_of_integers[right_index] = temp
 print(k, list_of_integers)
 left_index = left_index + 1

 right_index = right_index - 1

For example, if the given list of integers is:
 [50, 77, 40, 3, 90, 10, 30, 80]
then after this function call
that list of integers is mutated into:
 [50, 30, 10, 3, 90, 40, 77, 80]
because 50 is compared to 80,
then 77 is compared to 30 (swap them!),
then 40 is compared to 10 (swap them!),
then 3 is compared to 90.

(Continued from the previous slide.) When k is 4, the code looks at 90 and
3, sees that they are in the wrong order, and re-swaps them back to
their original positions. (See the set of green and red circles.) Oops!

My loop is going too far. After it reaches the middle, I have to STOP the
loop at that point. I make that correction, run again and pass the tests!

0 7
0 0 7 50 80
1 1 6 77 30
1 [50, 77, 40, 3, 90, 10, 30, 80]
1 [50, 30, 40, 3, 90, 10, 77, 80]
2 2 5 40 10
2 [50, 30, 40, 3, 90, 10, 77, 80]
2 [50, 30, 10, 3, 90, 40, 77, 80]
3 3 4 3 90
4 4 3 90 3
4 [50, 30, 10, 3, 90, 40, 77, 80]
4 [50, 30, 10, 90, 3, 40, 77, 80]

The correct swap (per the previous slide)
is shown in purple in the code below.

When I run the program
with the correct swap, I get
the output shown below. (I
have shown the output only to
the relevant point.)

	What to do when�a test fails
	What to do when a test fails: a solved example
	What to do when a test fails: a solved example
	What to do when a test fails: a solved example
	What to do when a test fails: a solved example
	What to do when a test fails: a solved example
	What to do when a test fails: a solved example
	What to do when a test fails: a solved example
	What to do when a test fails: a solved example
	What to do when a test fails: a solved example
	What to do when a test fails: a solved example
	What to do when a test fails: a solved example
	What to do when a test fails: a solved example
	What to do when a test fails: a solved example

