
Good practices
that help minimize the need for debugging

#1: Use Iterative Enhancement:
Repeat the following until you have a solution to your problem:

1. Find a stage for your problem that:
• is a step toward a solution, and
• is a SMALL step, and
• can be TESTED.

2. Solve the stage and TEST your solution to it. Don’t proceed
until you get this stage working.

#2: Break a problem
into sub-problems.
Write AND TEST separate
functions for the sub-problems.

#3: Keep patterns in mind.
Don’t reinvent the wheel.

#4: Maintain intellectual control of
your program. Techniques to do so include
using descriptive names, sparse but well-chosen
internal comments, and good use of white space.

The next slides
explain each of
these practices.

#1: Use Iterative
Enhancement:
Repeat the following until you
have a solution to your problem:

1. Find a stage for your
problem that:

• is a step toward a
solution, and

• is a SMALL step, and
• can be TESTED.

2. Solve the stage and TEST
your solution to it. Don’t
proceed until you get this
stage working.

How would you apply Iterative Enhancement
to this Session 7 problem? (Answer on next slide.)

def problem4a(window, point, n):
 """
 See problem4a_picture.pdf in this project for pictures that may
 help you better understand the following specification:

 Draws a sequence of n rg.Lines on the given
 rg.RoseWindow, as follows:
 -- There are the given number (n) of rg.Lines.
 -- Each rg.Line is vertical and has length 50.
 (All units are pixels.)
 -- The top of the first (leftmost) rg.Line
 is at the given rg.Point.
 -- Each successive rg.Line is 20 pixels to the right
 and 10 pixels down from the previous rg.Line.
 -- The first rg.Line has thickness 1.
 -- Each successive rg.Line has thickness 2 greater than
 the zg.Line to its left, but no greater than 13.
 (So once a rg.Line has thickness 13, it and all
 the rg.Lines to its right have thickness 13.)

 Returns the sum of
 the thicknesses of
 the rg.Line's.
 (See problem4a_picture.pdf for two test cases you can use for this.)

 Preconditions:
 :type window: rg.RoseWindow
 :type point: rg.Point
 The third argument is a positive integer
 and the given point is inside the given window.
 """

#1. Use Iterative
Enhancement:
Repeat the following until you have a
solution to your problem:

1. Find a stage for your problem that:
• is a step toward a solution, and
• is a SMALL step, and
• can be TESTED.

2. Solve the stage and TEST your
solution to it. Don’t proceed until
you get this stage working.

How would you apply
Iterative Enhancement to this Session 7 problem?
def problem4a(window, point, n):
 """
 See problem4a_picture.pdf in this project for pictures that may
 help you better understand the following specification:

 Draws a sequence of n rg.Lines on the given rg.RoseWindow,
 as follows:
 -- There are the given number (n) of rg.Lines.
 -- Each rg.Line is vertical and has length 50.
 (All units are pixels.)
 -- The top of the first (leftmost) rg.Line
 is at the given rg.Point.
 -- Each successive rg.Line is 20 pixels to the right
 and 10 pixels down from the previous rg.Line.
 -- The first rg.Line has thickness 1.
 -- Each successive rg.Line has thickness 2 greater than
 the zg.Line to its left, but no greater than 13.
 (So once a rg.Line has thickness 13,
 it and all the rg.Lines to its right have thickness 13.)

 Returns the sum of the thicknesses of the rg.Line's.
 (See problem4a_picture.pdf for two test cases you can use for this.)

 Preconditions:
 :type window: rg.RoseWindow
 :type point: rg.Point
 The third argument is a positive integer
 and the given point is inside the given window.
 """

Answer: Here is one Iterative Enhancement
Plan. The key is to get each stage TESTED and
WORKING before continuing to the next stage.

Stage 1: A test window appears, with your test
point drawn on the window. (Remove that
point when you finish the problem.)

Stage 2: The first line is drawn successfully, at
the right place.

Stage 3: N lines are drawn successfully, where your test has
(say) N=6 lines. All the same width at this stage.

Stage 4: The line widths increase by 2 per line.

Stage 5: The line widths don’t increase past 13.

Stage 6: The sum of the thicknesses is computed and returned.

#2: Break a problem
into sub-problems.

def keep_integers(list_of_lists):
 """
 Given a list of sub-sequences, returns a list
 that contains only the sub-sequences
 that contain ONLY integers. For example,
 if the given argument is:
 [(3, 1, 4),
 (10, 'hi', 10),
 [1, 2.5, 3, 4],
 'hello',
 [],
 ['404'],
 [30, -4]
]
 then this function returns:
 [(3, 1, 4),
 [],
 [30, -4]
]

Has non-integers, so don’t keep it

Has non-integers, so don’t keep it

Has non-integers, so don’t keep it

Has non-integers, so don’t keep it What would be a
reasonable sub-problem
for the problem to the
right? (It is a variation of a
problem from Session 16.)
(Answer on next slide.)

Write AND TEST
separate functions
for the sub-problems.

#2. Break a problem
into sub-problems.
Write AND TEST separate
functions for the sub-problems.

def keep_integers(list_of_lists):
 """
 Given a list of sub-sequences, returns a list
 that contains only the sub-sequences
 that contain ONLY integers. For example, if the
 given argument is:
 [(3, 1, 4),
 (10, 'hi', 10),
 [1, 2.5, 3, 4],
 'hello',
 [],
 ['oops'],
 [30, -4]
]
 then this function returns:
 [(3, 1, 4),
 [],
 [30, -4]
]

Has non-integers, so don’t keep it

What would be a reasonable sub-problem
for the problem to the right? (It is a variation of a
problem from Session 16.)

Answer: One way to solve this problem is to:
• loop through the list and, for each sub-sequence,
• determine if the sub-sequence has any non-integers in it.

def is_all_integers(sequence):
 """ Returns True if the given
 sequence contains
 only integers. """
 for k in range(len(sequence)):
 if type(sequence[k]) != int:
 return False

 return True

def keep_integers(list_of_lists):
 answer = []
 for k in range(len(list_of_lists)):
 if is_all_integers(list_of_lists[k]):
 answer.append(list_of_lists[k])

 return answer

Using the FIND pattern

It would be reasonable to make the latter a sub-
problem of its own (in its own function). Here is a
full solution, with the “helper” function on the right.

#3. Keep patterns in mind. Don’t reinvent the wheel.

• From Session 3 et al: Looping through a
RANGE with a FOR loop.

• range(m) – goes m times
(from 0 to m-1, inclusive)

• range(m, n+1) – goes from
m to n, inclusive
(does NOT include n+1)

• From Session 3 et al: Using objects.
• Constructing an object
• Applying a method
• Referencing a data attribute
• Using the DOT trick (and what to do

when it seems not to work)

• From Session 4 et al: Calling functions,
including functions defined within the module

• From Session 6: The Accumulator Pattern, in:
 Summing:

 total = total + number
 Counting:

 count = count + 1
 Graphics:

 x = x + pixels

• From various sessions: the SWAP pattern:
temp = a
a = b
b = temp

• From various sessions: Introducing an auxiliary
variable that works within a FOR or WHILE loop.

• From Session 9: Waiting for an Event (using a
WHILE loop with an IF statement and BREAK)

• From Session 11: Accumulating a sequence.

• From Session 11: Patterns for
iterating through sequences, including:
 Beginning to end
 Other ranges (e.g., backwards and every-3rd-item)
 The COUNT/SUM/etc pattern
 The FIND pattern (via LINEAR SEARCH)
 The MAX/MIN pattern (in a number of

variations)
 Looking two places in the sequence at once
 Looking at two sequences in parallel

 From Session 12: Mutating a list or object, and
TESTING whether the mutation worked correctly.

#4. Maintain intellectual control of your program.
Techniques to do so include using descriptive names, sparse but well-
chosen internal comments, and good use of white space.

For example:

def index_of_largest_number(numbers, n):
 """ ... """
 index_of_largest = 0 # using max/min pattern
 for k in range(1, n):
 if numbers[k] > numbers[index_of_largest]:
 index_of_largest = k

 return index_of_largest

Names:
• Use plurals for names of sequences (numbers).

Use singular for non-sequence items (circle or circle1 vs circles).
• The name might indicate the type of the object (index_of_largest, makes it clear that this is an INDEX)
• The name certainly should indicate WHAT it stands for (so upper_left_corner instead of just point)
• j, k, and i for index variables (this practice goes back over 60 years!)
• m, n for integers (and perhaps x for floats) for which no better name is easily available

Short internal
comment indicating
the pattern used
(keep these sparse!)

Single blank line to
separate the “chunks”
of the function from
each other (but two
blank lines between
function definitions)

Review: Good practices
that help minimize the need for debugging

#1: Use Iterative Enhancement:
Repeat the following until you have a solution to your problem:

1. Find a stage for your problem that:
• is a step toward a solution, and
• is a SMALL step, and
• can be TESTED.

2. Solve the stage and TEST your solution to it. Don’t proceed
until you get this stage working.

#2: Break a problem
into sub-problems.
Write AND TEST separate
functions for the sub-problems.

#3: Keep patterns in mind.
Don’t reinvent the wheel.

#4: Maintain intellectual control of
your program. Techniques to do so include
using descriptive names, sparse but well-chosen
internal comments, and good use of white space.

	Good practices�that help minimize the need for debugging
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Review: Good practices�that help minimize the need for debugging

