Good practices
that help minimize the need for debugging

#1: Use :

Repeat the following until you have a solution to your problem:

1. Find a stage for your problem that:
¢ s astep toward a solution, and
e isa SMALL step, and

#2: Break a problem
into .

Write AND TEST separate
functions for the sub-problems.

e can be TESTED.

2. Solve the stage and TEST your solution to it. Don’t proceed #3 Keep in mind,

until you get this stage working.

Don’t reinvent the wheel.

#4: Maintain of
your program. Techniques to do so include
using , sparse but

, and good use of

The next slides
explain each of

these practices.

#1: Use Iterative
Enhancement:

the following until you
have a solution to your problem:

1. Finda for your
problem that:

* isasteptoward a
solution, and

* isa , and

your solution to it. Don’t
proceed until you get this
stage working.

How would you apply Iterative Enhancement
to this Session 7 problem? (Answer on next slide.)

def problem4a(window, point, n):

See problemda_picture.pdf 1in this project for pictures that may
help you better understand the following specification:

Draws a sequence of n rg.Lines on the given
rg.RoseWindow, as follows:
-- There are the given number (n) of rg.Lines.
-- Each rg.Line 1is vertical and has length 50.
(ALL units are pixels.)
-- The top of the first (leftmost) rg.Line
is at the given rg.Point.
-- Each successive rg.Line is 20 pixels to the right
and 10 pixels down from the previous rg.Line.
-- The first rg.Line has thickness 1.
-- Each successive rg.Line has thickness 2 greater than
the zg.Line to 1its left, but no greater than 13.
(So once a rg.Line has thickness 13, it and all
the rg.Lines to its right have thickness 13.)
Returns the sum of [@lProblemta Test1:6 lines [= =] =
the thicknesses of

the rg.Line's.
(See problemda_picture.pds

Preconditions: ‘ |
:type window: rg.RoseWir I

:type point: rg.Point
The third argument is a pc
and the given point is 1in¢

Iro exit, click anywhere in this window

#1. Use Iterative
Enhancement:

Repeat the following until you have a

solution to your problem:

1. Find a stage for your problem that:
¢ is a step toward a solution, and
* isa SMALL step, and
e can be TESTED.

2. Solve the stage and TEST your

solution to it. Don’t proceed until
you get this stage working.

Problemda, Test 1: 6 lines =& =

How would you apply
Iterative Enhancement to this Ses

def problem4a(window, point, n):

See problem4a_picture.pdf 1in this ¢
help you better understand the followir

Draws a sequence of n rg.Lines on the

as follows:

o exit, click anywhere in this window

-- There are the given number (n) of W

-- Each rg.Line is vertical and has Llength 50.
(ALL units are pixels.)

-- The top of the first (leftmost) rg.Line
is at the given rg.Point.

-- Each successive rg.Line is 20 pixels to the righ
and 10 pixels down from the previous rg.Line.

-- The first rg.Line has thickness 1.

-- Each successive rg.Line has thickness 2 greater

the zg.Line to its left, but no greater than 13.

(So once a rg.Line has thickness 13,
it and all the rg.Lines to its right have thi

!

Returns the sum of the thicknesses of the rg.Line's.

§ Pl s Teal s

o exit. click anywhere in this window|

=

§ Pl 85 Tei s

F ot ts, 1L i (B) [| =l sl | C

) I I

Answer: Here is one Iterative Enhancement
Plan. The key is to get each stage TESTED and
WORKING before continuing to the next stage.

Stage 1: A test window appears, with your test
point drawn on the window. (Remove that
point when you finish the problem.)

Stage 2: The first line is drawn successfully, at
the right place.

o exi, click anywhera in this window

o exit. click anywhere in this windiow] | [o exit. click anywhere in this windou}

B

F o n T 1 e

o exit click anywhers in this window

(say) N=6 lines. All the same width at this stage.

Stage 3: N lines are drawn successfully, where your test has

Stage 4: The line widths increase by 2 per line.

Stage 5: The line widths don’t increase past 13.

Stage 6: The sum of the thicknesses is computed and returned.

#2: Break a problem
into sub-problems.

Write AND TEST

separate functions _ . _
Given a Llist of sub-sequences, returns a Llist
for the SUb-prObIems. that contains only the sub-sequences

that contain ONLY 1integers. For example,
i1f the given argument 1is:

def keep_integers(list_of_lists):

2 [(3, 1, 4)," Has non-integers, so don’t keep it

(10, 'hi', 10),

[1, 2.5, 3, 4], %' Has non-integers, so don’t keep it

'hello’, - ; -
[], ﬁ Has non-integers, so don’t keep it |
What WOUId be a j ['494 ']; H Has non-integers, so don’t keep it |
reasonable sub-problem /7][30, -4]
for the problem to the then this function returns:
right? (itis a variation of a [(3, 1, 4),
. [1,
problem from Session 16.) [30, -4]
(Answer on next slide.)]

def keep_integers(list_of_lists):
#2. Break a prOblem Given a list of sub-sequences, returns a list
. that contains only the sub-sequences
= that contain ONLY integers. For example, 1if the
into sub-problems. ihat contain ol
. [(3, 1, 4),
Write AND TEST separate ﬁ@:z i 1%) \
functions for the sub-problems. hello’, &—
[1 Has non-integers, so don’t keep it
['oops’],
What would be a reasonable sub-problem e
for the problem to the right? (itis a variation of a then this funetion returns:
problem from Session 16.) [;]j 4
4]

Answer: One way to solve this problem is to:

* loop through the list and, for each sub-sequence,
e determine if the sub-sequence has any non-integers in it.

It would be reasonable to make the latter a sub-
problem of its own (in its own function). Here is a def is_all_integers(sequence):

. . 7 7 . . """ Returns True 1if the given
full solution, with the “helper” function on the right. SortEes o

only integers. """
for k in range(len(sequence)):
if type(sequence[k]) != int:
return False

def keep_integers(list_of_lists):
answer = []
for k in range(len(list_of_lists)):
if is_all integers(list_of lists[k]):
answer.append(list_of_lists[k])

— -
return answer

#3. Keep patterns in mind. Don’t reinvent the wheel.

From Session 3 et al: Looping through a
RANGE with a FOR loop.
* range(m)—- goes m times
(from 0 to m-1, inclusive)
* range(m, n+1) — goes from
m to n, inclusive
(does NOT include n+1)

From Session 3 et al: Using objects.
e Constructing an object
e Applying a method
e Referencing a data attribute
e Using the DOT trick (and what to do
when it seems not to work)

From Session 4 et al: Calling functions,
including functions defined within the module

From Session 6: The Accumulator Pattern, in:
= Summing:

total = total + number
= Counting:

count = count + 1
= Graphics:

X = X + pixels

From various sessions: the SWAP pattern:

temp = a
a=>b
b = temp

From various sessions: Introducing an auxiliary
variable that works within a FOR or WHILE loop.

From Session 9: Waiting for an Event (using a
WHILE loop with an IF statement and BREAK)

From Session 11: Accumulating a sequence.

From Session 11: Patterns for
iterating through sequences, including:
= Beginning to end
= QOther ranges (e.g., backwards and every-3rd-item)
= The COUNT/SUM/etc pattern
= The FIND pattern (via LINEAR SEARCH)
= The MAX/MIN pattern (in a number of
variations)
= looking two places in the sequence at once
= [ooking at two sequences in parallel

= From Session 12: Mutating a list or object, and

TESTING whether the mutation worked correctly.

#4. Maintain intellectual control of your program.
Techniques to do so include using descriptive names, sparse but well-

chosen internal comments, and good use of white space.

For example:

def index_of_largest_number(numbers, n):

index_of_largest = @ # using max/min pattern
for k in range(1, n):
if numbers[k] > numbers[index_of largest]:
index_of_largest = k

Short internal
comment indicating
the pattern used
(keep these sparse!)

<
return index_of_ largest

Single blank line to
separate the “chunks”
of the function from

each other (but two
blank lines between
function definitions)

Names:

Use plurals for names of sequences (numbers).

Use singular for non-sequence items (circle or circlel vs circles).

The name might indicate the type of the object (index_of_largest, makes it clear that this is an INDEX)
The name certainly should indicate WHAT it stands for (so upper_left_corner instead of just point)

j, k, and i for index variables (this practice goes back over 60 years!)

m, n for integers (and perhaps x for floats) for which no better name is easily available

Review: Good practices
that help minimize the need for debugging

#1: Use Iterative Enhancement:

Repeat the following until you have a solution to your problem:

1. Find a stage for your problem that:
¢ s astep toward a solution, and
e isa SMALL step, and
e can be TESTED.

2. Solve the stage and TEST your solution to it. Don’t proceed
until you get this stage working.

#2: Break a problem
into sub-problems.

Write AND TEST separate
functions for the sub-problems.

#3: Keep patterns in mind.
Don’t reinvent the wheel.

#4: Maintain intellectual control of

your program. Techniques to do so include
using descriptive names, sparse but well-chosen
internal comments, and good use of white space.

	Good practices�that help minimize the need for debugging
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Review: Good practices�that help minimize the need for debugging

