
 CSSE 120 – Introduction to Software Development Box and Pointer Diagrams – Page 6 of 7

Output:

A. [30, 60, 90]

B. [30, 60, 90]

8. We have seen that it is simply not possible for a
function to change the arrow in the caller that
corresponds to one of the function’s arguments.
But many objects can be mutated, which means
that the object’s value (not the variable’s
reference) changes.

To see this, draw a Box and Pointer diagram that
shows what happens when main (below)
executes. Also show the output that is printed.
Do NOT show boxes for the loop variables k and
number, since that would clutter the diagram.

def main():
 demo_mutating_a_list()
 demo_constructing_a_new_list()

def demo_mutating_a_list():
 my_list = [10, 20, 30]
 mutate_list(my_list)
 print('A.', my_list)

def mutate_list(numbers):
 for k in range(len(numbers)):
 numbers[k] = numbers[k] * 3

def demo_constructing_a_new_list():
 my_list = [10, 20, 30]
 my_list = return_tripled_list(my_list)
 print('B.', my_list)

def return_tripled_list(numbers):
 new_list = []
 for number in numbers:
 new_list.append(number * 3)

 return new_list

Box and Pointer diagram:

demo_mutating_a_list:

mutate_list:

demo_constructing_a_new_list

return_tripled_list:

my_list

60

numbers

0 1 2

90

30

new_list

60

90

30

0 1 2

20

0 1 2

30

10

my_list

20

30

10

× × ×

mutate_list and return_tripled_list both end up with a tripled list. Which one
uses less storage? mutate_list return_tripled_list (circle your choice)

numbers

×

