
 CSSE 120 – Introduction to Software Development Box and Pointer Diagrams – Page 1 of 7

Name: ________________________________

1. With your instructor, draw a Box and
Pointer diagram that shows what
happens when the following
statements execute. (Use the boxes
we supplied; just add labels and
arrows for variables and data for
objects.)

2. An assignment statement causes an arrow to be established or changed.
That’s true for fields as well as ordinary variables. The arrows always
point to objects, never to other variables.

With your instructor, draw a Box and
Pointer diagram that shows what
happens when the statements below
execute. (We’ve already done the first
two statements.)

In doing this exercise, note that it is
perfectly OK to have two variables refer to the same object.

 a = 48
 p = zg.Point(100, 150)

 a = a + 1
 p.x = 300
 p2 = p
 p2.y = p.x - 40

 Box and Pointer diagram:

300

48 a

p

100

150

x y ...

49

p2

 x = 48
 p1 = zg.Point(100, 150)

 Box and Pointer diagram:

48

100

150

x y ...

260

x

p1

×

× ×

The 3rd and other
arrows point to the
Point’s color, etc.

 CSSE 120 – Introduction to Software Development Box and Pointer Diagrams – Page 2 of 7

3. A function call creates a new namespace in which the function will run. The parameters
are variables in that namespace. When the function is called, the first thing that happens
is that each parameter is assigned the value of the corresponding actual argument.

For example, in the code snippet below when foo(100, x) executes,
the parameter a is assigned the value 100, just as if the statement a = 100
were executed.

With your instructor, draw a
Box and Pointer diagram that
shows what happens when
main (below) executes.

def main():
 x = 48
 foo(100, x)
 foo(x, 30)

def foo(a, b):
 ...

 Box and Pointer diagram:

main:

foo (1st call):

foo (2nd call):

100

48 x

30

a

a

b

b

 CSSE 120 – Introduction to Software Development Box and Pointer Diagrams – Page 3 of 7

4. As you saw in the previous problem, each function call creates a new namespace in which
the function will run. Variables in that namespace are simply not the same as variables
with the same name in main or other namespaces. Try this one:

Complete the Box-and-Pointer diagram to
the right to show what happens when
main (below) executes. Also show the
output that is printed.

5. As you know, you can send information “back” from a
function to its caller by using a return statement. Try
this one to see how
that appears in these
diagrams:

Complete the Box-and-
Pointer diagram to the
right to show what
happens when main (to
the right) executes.

def main():
 x = 48
 a = 11
 foo(100, x)
 print('C.', x, a)

def foo(a, b):
 print('A.', a)
 a = 33
 print('B.', a)

 Box and Pointer diagram:

main:

foo:

100

48 x

33

11 a

a

b

Output:

A. ____100______

B. ____33_________

C. ___48 11___

 Box and Pointer diagram:

main:

foo:

48
x

y

a
96

b

def main():
 x = 48
 y = foo(x)

def foo(a):
 b = 2 * a
 return b

×

 CSSE 120 – Introduction to Software Development Box and Pointer Diagrams – Page 4 of 7

def main():
 demo_attempt_to_change_an_arrow()
 demo_constructing_a_new_number()
 demo_again()

def demo_attempt_to_change_an_arrow():
 number = 10
 attempt_to_change_an_arrow(number)
 print('B.', number)

def attempt_to_change_an_arrow(number):
 number = number + 1
 print('A.', number)

def demo_constructing_a_new_number():
 number = 10
 number2 = return_number(number)
 print('C.', number, number2)
 number = number2
 print('D.', number, number2)

def demo_again():
 number = 10
 number = return_number(number)
 print('E.', number)

def return_number(number):
 return (number + 1)

Output: A. _____11______

B. ________10__________

C. _____10 ___11______

D. _____11 __11________

E. ______11______________

6. It is simply not possible for a function to change
the arrow in the caller that corresponds to one
of the function’s arguments. If you really want
to accomplish something like that, you have to
return a value and re-assign the variable that
points to the argument to that returned value.
Try this one to see those ideas in action:

Complete the Box-and-Pointer diagram to the
right to show what happens when main (below)
executes. Also show the output that is printed.

Box and Pointer diagram:

demo_attempt_to_change_an_arrow:

attempt_to_change_an_arrow:

demo_constructing_a_new_number:

return_number (1st call):

demo_again():

return_number(2nd call):

10

11

11

number

number

number

number 10

 number2

10 number

11

number

×

×

×

 CSSE 120 – Introduction to Software Development Box and Pointer Diagrams – Page 5 of 7

def main():
 demo_attempt_to_change_an_arrow()
 demo_constructing_a_new_list()

def demo_attempt_to_change_an_arrow():
 my_list = [10, 50]
 attempt_to_change_an_arrow(my_list)
 print('B.', my_list)

def attempt_to_change_an_arrow(my_list):
 my_list = [1, 2, 4]
 print('A.', my_list)

def demo_constructing_a_new_list():
 my_list = [10, 50]
 my_list = return_list(my_list)
 print('C.', my_list)

def return_list(my_list):
 return [1, 2, 4]

Output:

A. [1, 2, 4]

B. [10, 50]

C. [1, 2, 4]

7. There is nothing special about using numbers in
the preceding exercise. To see this, draw a Box-
and-Pointer diagram that shows what happens
when main (below) executes. Also show the
output that is printed. (This example is similar to
the previous one, but with lists instead of
numbers.)

Box and Pointer diagram:

demo_attempt_to_change_an_arrow:

attempt_to_change_an_arrow:

demo_constructing_a_new_list

return_list:

10

my_list

0 1

50

2

my_list

0 1 2

4

1

10

0 1

50

my_list

1

2

my_list

4

1

0 1 2

×

×

 CSSE 120 – Introduction to Software Development Box and Pointer Diagrams – Page 6 of 7

Output:

A. [30, 60, 90]

B. [30, 60, 90]

8. We have seen that it is simply not possible for a
function to change the arrow in the caller that
corresponds to one of the function’s arguments.
But many objects can be mutated, which means
that the object’s value (not the variable’s
reference) changes.

To see this, draw a Box and Pointer diagram that
shows what happens when main (below)
executes. Also show the output that is printed.
Do NOT show boxes for the loop variables k and
number, since that would clutter the diagram.

def main():
 demo_mutating_a_list()
 demo_constructing_a_new_list()

def demo_mutating_a_list():
 my_list = [10, 20, 30]
 mutate_list(my_list)
 print('A.', my_list)

def mutate_list(numbers):
 for k in range(len(numbers)):
 numbers[k] = numbers[k] * 3

def demo_constructing_a_new_list():
 my_list = [10, 20, 30]
 my_list = return_tripled_list(my_list)
 print('B.', my_list)

def return_tripled_list(numbers):
 new_list = []
 for number in numbers:
 new_list.append(number * 3)

 return new_list

Box and Pointer diagram:

demo_mutating_a_list:

mutate_list:

demo_constructing_a_new_list

return_tripled_list:

my_list

60

numbers

0 1 2

90

30

new_list

60

90

30

0 1 2

20

0 1 2

30

10

my_list

20

30

10

× × ×

mutate_list and return_tripled_list both end up with a tripled list. Which one
uses less storage? mutate_list return_tripled_list (circle your choice)

numbers

×

 CSSE 120 – Introduction to Software Development Box and Pointer Diagrams – Page 7 of 7

Output:

A. Point(150, 30)

B. Point(150, 30)

9. As you just saw, lists are mutable – the value of
the object itself (that is, its “insides”) can
change.

Tuples are NOT mutable – that is their primary
difference from lists. Strings are NOT mutable
and numbers are NOT mutable.

Instances of user-defined classes (like the
Zellegraphics objects) are, in general, mutable.

To see this, draw a Box and Pointer diagram that
shows what happens when main (below)
executes. Also show the output that is printed.

Box and Pointer diagram:

demo_mutating_an_object:

mutate_point:

demo_constructing_a_new_new_object

return_tripled_clone:

point

150

 point

x y ...

30

point

150

30

50

x y ...

10

point

50

10

def main():
 demo_mutating_an_object()
 demo_constructing_a_new_object()

def demo_mutating_an_object():
 point = zg.Point(50, 10)
 mutate_point(point)
 print('A.', point)

def mutate_point(point):
 point.x = point.x * 3
 point.y = point.y * 3

def demo_constructing_a_new_object():
 point = zg.Point(50, 10)
 point = return_tripled_clone(point)
 print('B.', point)

def return_tripled_clone(point):
 new_point = zg.Point(point.x * 3,
 point.y * 3)
 return new_point

× ×

mutate_point and return_tripled_clone both end up with a tripled point. Which one
uses less storage? mutate_point return_tripled_clone (circle your choice)

new point
x y ...

×

	Name: ________________________________

