
 CSSE 120 – Introduction to Software Development Box-and-Pointer Diagrams, Mutable Objects – Page 1 of 7

Name: ___________ SOLUTION ______________ Section: 1 2 3 4 5

As you complete EACH problem, ask a student assistant to check your answer AT THAT TIME!

Throughout these problems:

• Use the boxes we supplied; just add labels and arrows for variables and data for non-
container objects.

• Assume the existence of a Point class with just two instance variables (x and y).

• Assume the existence of a Circle class with just two instance variables (center and
radius, where center is a Point object). Assume that a Circle object stores, as its center,
a reference to the Point object that it is given and not a copy of that Point.

As a reminder, here are the four rules for drawing box-and-pointer diagrams, followed by an
example from the video.

Rule 1: Draw a NON-container object by putting its value inside a box.

Rule 2: Draw a variable (aka name) using a box labeled with the variable’s name and with
arrows from the box to the object to which the variable currently refers.

Rule 3: Draw a CONTAINER object by making a box for it, and then creating sub-boxes that
are drawn as if they were variables, but with names for the instance variables of an object and
indices for items of a sequence. (We will talk about sequences later in the course.)

Rule 4: When code RE-assigns a variable, as in x = blah:

• Evaluate the expression on the right-hand-side. If it is a new object, draw a box for it.

• Cross through the existing arrow (if any) from the variable.

• Draw a NEW arrow from the
variable to the object to which the
right-hand-side evaluated.

Arrows ALWAYS go:

from a variable’s box

to an object’s box.

Arrows NEVER go from a variable’s box
to another variable’s box.

x = 48

p = Point(100, 150)

numbers = [4, 30.2, 10]

x = x + 3

p.y = 22

z = x

 CSSE 120 – Introduction to Software Development Box-and-Pointer Diagrams, Mutable Objects – Page 2 of 7

1. Using the diagram at the bottom of this page, draw a Box-and-Pointer diagram that shows
what happens when the following statements execute. Then indicate what output is
printed. We already supplied the boxes for the diagram; you label them and draw arrows.

x = 33

r = 20

p = Point(80, 50)

c = Circle(p, r)

print('x:', x)

print('r:', r)

print('p.x:', p.x)

print('p.y:', p.y)

print('c.center.x:', c.center.x)

print('c.center.y:', c.center.y)

print('c.radius:', c.radius)

 Output:

x: 33

r: 20

p.x: 80

p.y: 50

c.center.x: 80

c.center.y: 50

c.radius: 20

 Box and Pointer diagram:

33

20

80 50

x

r

c

p

x y

center radius

 CSSE 120 – Introduction to Software Development Box-and-Pointer Diagrams, Mutable Objects – Page 3 of 7

2. This problem continues the previous one. We have drawn a SOLUTION to the previous
problem below. Use it to check your answer to the previous problem. Then augment the
box-and-pointer diagram below to include the new statements in the code below. Also
indicate what output is printed by the print
statements that follow that new code.

x = 33

r = 20

p = Point(80, 50)

c = Circle(p, r)
<same print statements as in problem 1>

r = 77

p.x = 44

<same print statements as in problem 1,
repeated here>

33

20

80

50

80

50

20

Previous problem printed

these numbers.

New code

is here

 Output from 2nd set of print statements:

x: 33

r: 77

p.x: 44

p.y: 50

c.center.x: 44

c.center.y: 50

c.radius: 20

Especially

check the

circled ones!

 Box and Pointer diagram:

33

20

80 50

x

r

c

p

x y

center radius

77

44

 CSSE 120 – Introduction to Software Development Box-and-Pointer Diagrams, Mutable Objects – Page 4 of 7

READ THIS page carefully, asking questions as needed!

Consider the code to the right. A function call creates a new
namespace in which the function will run. Hence, when main is
called, a namespace is created and then names (variables) x and
y are created and assigned values. The box-and-pointer diagram
after the assignments to x and y (but before the call to foo) is:

When a function is called, the function’s parameters are added
to the function’s namespace. Each parameter is assigned the
value of the corresponding actual argument. For example, when
the call to function foo occurs in the code to the right, it is as if
the following assignments occur:

a (in foo) = 100 (in main)

b (in foo) = x (in main) which is 44

So, after the call to foo, the box and pointer has TWO parts (for the TWO namespaces), as
shown below:

main’s namespace foo’s namespace

Note that the variables in foo point to values in main.
Also, note that the constant 100 appears in main,
so we have drawn it in main’s namespace.

When the statement

x = 70

in foo runs, foo’s namespace acquires its own variable x,
 as shown to the right.

def main():

 x = 44

 y = 33

 foo(100, x)

def foo(a, b):

 ...

 x = 70

main()

 x

 y

44

33

 x

 y

44

33

 a

 b

100

 x 70

 CSSE 120 – Introduction to Software Development Box-and-Pointer Diagrams, Mutable Objects – Page 5 of 7

3. Draw a Box-and-Pointer diagram that shows
what happens when main executes. Then
indicate what output is printed, assuming
appropriate print statements.

We have already drawn all the boxes that you
need. Just draw arrows (and eventually X’s).

 Output:

a: 44

b: 33

z: 22

p1.x: 1

p1.y: 200

def main():

 a = 44

 b = 33

 z = 22

 p1 = Point(100, 200)

 foo(a, b, z, p1)

 <print statements here>

def foo(x, y, z, p):

 x = 10 * x

 y = 88

 p.x = 1

 p = Point(300, 400)

 p.y = 2

 Box and Pointer diagram:

In main’s namespace: In foo’s namespace:

 a

 b

 z

 p1

200

x y

44

33

22

100

 z

 y

 x

 p

88

10

1

2

x y

440

400 300

 CSSE 120 – Introduction to Software Development Box-and-Pointer Diagrams, Mutable Objects – Page 6 of 7

4. Draw a Box-and-Pointer diagram that shows
what happens when main executes. Then
indicate what output is printed, assuming
appropriate print statements.

Draw the entire box-and-pointer
diagram on a separate sheet of paper,
then staple that sheet to this handout.

def main():

 a = 88

 b = 55

 p1 = Point(b, 66)

 p2 = Point(77, a)

 a = foo(p1, p2, a, b)

 <print statements here>

def foo(p, p1, a, b):

 p.y = 100

 p1.y = b

 p = Point(300, 400)

 p.x = 200

 b = 99

 <print statements here>

 return a + 10

main()

 Output from printing in foo:

a: ___ 88 __

b: ___ 99 __

p.x: ___ 200 __

p.y: ___ 400 __

p1.x: ___ 77 __

p1.y: ___ 55 __

 Output from printing in main:

a: ___ 98 __

b: ___ 55 __

p1.x: ___ 55 __

p1.y: ___ 100 __

p2.x: ___ 77 __

p2.y: ___ 55 __

 CSSE 120 – Introduction to Software Development Box-and-Pointer Diagrams, Mutable Objects – Page 7 of 7

The arrows form in the following order:

green then blue then grey then red then orange

 Box and Pointer diagram:

In main’s namespace: In foo’s namespace:

 a

 b

 p1

 p2

66

88

55

 b

 a

 p

99

400

100

x y

x y

77

x y

 p1

300

200

98

	Name: ___________ SOLUTION ______________ Section: 1 2 3 4 5

