Page 1

Slide 1
Recall that a sequence in Python is a collection of data that can be referenced by using a single name. So [Click. colors = …] the variable colors here refers to a collection of 3 strings that represent colors.
Recall also that you can still get to the items of the collection by indexing, like this:
· [Click. colors[0]] colors open-bracket 0 close-bracket refers to the beginning item of the sequence, here, the string ‘red’.
· [Click. colors[1]] colors 1 refers to the next item of the sequence, here, the string ‘white’.
· [Click. colors[1]] And colors 2 refers to the item after that, here the string ‘blue’.
[Click. Bring back colors[0] and colors[1].]
Again, the notation is:
· [Click. colors] the sequence name, here colors,
· [Click. bracket] followed by an open-square-bracket symbol,
· [Click. index] followed by a non-negative integer, called the index, that specifies which item of the sequence is being referenced,
· [Click. bracket] followed by a close-square-bracket symbol.
[Click. The number…] Again, the number in the square brackets is called the index, and the things in the sequence are called the items or (equivalently) the elements of the sequence – we use the words items and elements interchangeably.
[Click. Indexing starts…] Note that indexing starts at zero, not at one – it works that way for historical reasons that go back to the underlying hardware.

Slide 2
The fact that the beginning index is zero leads to a potential gotcha when referring to the last element of a sequence. Let’s look at an example.
Consider the cool_words list here. [Click. cool_words] It has 4 items, numbered 0, 1, 2 and 3. So refering to the bracket-3 item [Click. bracket 3] is fine – that refers to the last item in the sequence. Likewise, since the len function returns 4 as the length of the sequence, using the length minus 1 as the index for the last item [Click. bracket length - 1] is also correct.
But if you attempt to reference cool_words bracket 4 [Click. bracket 4], that is one PAST the end of the list and causes the code to die at the attempted reference. Likewise, using the length of the list as the index [Click. bracket length]means going one PAST the end of the list and and causes the code to die.
To repeat: The allowable range for an index of a sequence is from 0 to the length of the sequence MINUS 1. When a statement executes with an index that is not within the range for the sequence, Python produces a run-time error message like that shown – index out of range is the key expression.
Bottom line:
· First, be familiar with this index out of range error message and realize that if you get it, you should simply check the index that you used.
· [bookmark: _GoBack]Second, avoid this off-by-one error. That is, be mentally tough and use the length of the sequence MINUS 1 if you want to refer to the last item of a sequence.

