Using objects.

Previous videos have shown you what you will do in modules m1e and m2 during Session 1. This video will show you module m3. It introduces some new ideas and has some work for you to do to solidify your understanding of those ideas.
First I’ll open module m3. There is no E after the 3, so I expect that there will be one or more TODO’s in m3.
I see that the beginning part has lots of examples, but not much explanation. This video will provide the EXPLANATION for m3, and you can (and should) ask for clarifications and/or further explanation DURING Session 1.
You should RUN m3 as the first thing you do with it, so that you can see what it does. Hey, cool! I see that the program does some fun graphics! When movement seems to stop, just click anywhere in the window to close the window.
The graphics here is called Turtle Graphics and has a long and distinguished history. If you are curious about that history, here are a couple of links you might enjoy:
http://social.technet.microsoft.com/wiki/contents/articles/29933.small-basic-the-history-of-the-logo-turtle.aspx
http://el.media.mit.edu/logo-foundation/what_is_logo/history.html
The first gives the early history of Turtle Graphics, while the second gives the history of the hugely influential programming language called Logo that incorporated Turtle Graphics.
Let’s look at the code in m3. Don’t expect to master all that I say in the rest of this video. This video is just to help you get READY for doing m3 DURING Session 1, where the deep learning happens. That said:
Line 1 imports the turtle module. That just means that there is a module (that is, file) called turtle at some special place that your setup knows about. Importing it allows the program to access all the things defined INSIDE that turtle module, simply by typing the word turtle followed by a DOT, like this:
What I just did is called the DOT trick. As it happens, you don’t need to know anything about what’s inside the turtle module beyond the examples below, but that DOT trick will be useful in LOTS of other places.
In Line 6, the notation turtle DOT Screen PARENTHESES says to go to the turtle (with-a-little-t) module, locate the code that says what a Screen is, and CONSTRUCT a Screen object. The left-hand-side of Line 6 says that the NAME window refers to that Screen object. So, a name followed by an equal sign, followed by a value makes that name be a reference to that value.
In Line 7, that Screen object, which is now called window, CALLS its delay function, sending that function the number 50. To CALL a function means to go to the function’s definition, run its code, then come back to where you were. More on that in a forthcoming video.
When the function name follows an object and a dot, we call the function a METHOD. Again, lots more on that later.
That particular method, the one called delay, makes the animation a bit slower than its default, so that you can see the turtle motions a little easier in this example.
Line 12 is very much like line 6 – do you see how they have the same form? Line 12 again goes to the turtle (with a little-t) module, constructs a Turtle object (with a capital T) as defined in the little-t turtle module, and makes the name nadia refer to that object. Line 13 constructs a second Turtle object and makes the name akil refer to that second Turtle. When you next run this program, notice how nadia (the Turtle that will move first) looks different from akil.
Lines 18 to 27 are all very much like Line 7, except that these lines do things that Turtles can do while Line 7 did something that only a Screen can do. All these lines follow the WHO DOT DOES-WHAT WITH-WHAT pattern. For example, Line 18 asks the Turtle named nadia (that’s the WHO) to move forward (that’s the DOES-WHAT) a distance of 100 units (that’s the WITH-WHAT).
In Session 1, you should run the program again at this point, to see what the forward and other methods seem to do. Let’s do so now: There is nadia, moving forward 100, then turning left 90 degrees, then moving forward again 200 units. In the code, it used fd for as a nickname for forward – many methods in Turtle Graphics have shorter nicknames.
Now akil turns right 45 degrees, goes backwards 50 units, then turns right 60 degrees.
Then nadia moves forward 50 and turns left 135 degrees. We’ll come back to the rest of the run shortly.
Of course, just ask in class if any of these METHODS not clear to you. You can also use the DOT trick, like this:
[Type nadia.]
All the names with an M beside them are METHODS that a Turtle (like nadia and akil) can do. If you click on one of them, like this, [click on backward] it pops up some documentation that explains what that method does.
We do NOT want you to start memorizing a bunch of Turtle methods! Nor do we expect that the documentation will make total sense to you. Just use these examples to start getting used to the WHO DOES-WHAT WITH-WHAT pattern, in a fun way.
 OK, one last idea in m3: Look at lines 33 to 39. Those set characteristics of the two Turtles, nadia and akil. We call such characteristics ATTRIBUTES, or (more commonly) INSTANCE VARIABLES. For example, line 33 sets nadia’s underscore pencolor instance variable to blue. Note the ABSENCE of parentheses in Lines 33 to 39. That is why underscore pencolor, underscore pensize, and underscore speed are INSTANCE VARIABLES, while FORWARD and LEFT (which DO have parentheses) are METHODS.
By the way, the file COLORS.txt in your project lists all the strings that you can use as names for colors.
Again, don’t expect all of this to sink in yet! We will do LOTS of practice with these ideas! In doing that practice, in class where you can ask questions easily, that’s where you will master this material, over the next week or so.
Finally, note that m3 has a TODO. Item 1 asks you to read a comment that recaps what we just discussed. Item two asks you to put some lines that make nadia or akil move about. For example, you could add this:
[Type:
nadia.left(60)
nadia.foward(500)
purposefully misspelling forward. Run and point out the error message.]
Oh, looks like I goofed! If you see RED in the Console or if the window closes prematurely, then something went wrong. In this exercise it will usually be a spelling error.
[Erase back to the dot]. This time, after I retype the dot and a few more letters, I will press the ENTER key to let Eclipse type the name for me. You should try that too. It helps prevent spelling errors, and is also faster once you get used to it.

If you get any error messages during Session 1, don’t hesitate to ask for help fixing them. You will NOT master error messages right away; that will take several sessions.
[bookmark: _GoBack]Last thing: the 3rd TODO asks me to CONSTRUCT another Turtle at Line 14, then make my new Turtle do something. For example, I might type this:
[sarah = turtle.Turtle()
sarah._pencolor = 'green'
sarah._pensize = 20
sarah.forward(300)
Then run.]
Again, if anything goes wrong when you do this in Session 1, first look for a spelling typo and then be quick to ask for help as needed.
To summarize, there are 3 key ideas in m3:
· First, [select nadia = turtle.Turtle()] Lines like this show you how to CONSTRUCT a Turtle (with a capital T) as defined in the turtle (with a little
· t) module, and how to give that Turtle a name, here nadia.
· Second, [select nadia.forward(100)] Lines like this show you how to ask an OBJECT (here, nadia) to call (that is, run) a METHOD (here forward), possibly sending that method some information (here 100). That is the WHO DOES-WHAT WITH-WHAT pattern.
· Third, [select nadia._pencolor = ‘blue’] Lines like this show you how to ask an OBJECT (here, nadia) to change the value of one of its INSTANCE VARIABLES (here, underscore pencolor) to a new value (here, the STRING blue).
This video has shown you how you will do module m3 of Session 1. There will be LOTS of people to help you with the modules DURING session 1. So don’t worry if you are fuzzy on ANYTHING at this point! Just have fun with the Turtles!
