
Using Pointers to Send Information Back From a Function Page 1

Discussion: The usual way for a function to send information back to its caller is by using

a return statement.

For example, the code below on the left calls the function foo (which is shown on the right) and
captures the returned value in a variable x:

Notice the key features: a return statement in the function (and hence a non-void return type
in the function prototype), and an assignment of the returned value into a variable in the
calling code. (Note: sometimes you can just use the returned value in an expression, without
bothering to store it in a variable.)

Another, less common, way for a function to send information back to its caller is by using
pointers. This second way is useful in either of the following situations:

1. You want to send more than one piece of information back from the function.

2. The information being sent back is part of a large thing, e.g. an array or a structure.

See Using Pointers To Save Time and Space for more about the latter. We’ll focus on:

Situation: You want to send more than one piece of information back from the function.

Here’s how to do this:

 The caller has a variable of the right type to contain the information. For example:

 float r;

 The caller passes the address of that variable to the function. For example:

 foo(..., &r, ...);

 The function has a pointer of the right type as its corresponding parameter. For
example:

 void foo(..., float* p, ...) {

 ...

 }

 The function sets the pointer’s pointee (which is the variable in the caller) as desired.
For example:

 *p = ...;

See the Example for a continuation of this discussion.

double x;

x = foo(...);

double foo(...) {

 ...

 return ...;

}

../UsingPointersToSaveTimeAndSpace/index.html
example.pdf

