Using Pointers to Send Information Back From a Function	 Page 1
[bookmark: Discussion]Discussion: The usual way for a function to send information back to its caller is by using a return statement.
For example, the code below on the left calls the function foo (which is shown on the right) and captures the returned value in a variable x:
 (
double foo(...) {
 ...
 return ...;
}
) (
double x;
x = foo(
...
);
)

Notice the key features: a return statement in the function (and hence a non-void return type in the function prototype), and an assignment of the returned value into a variable in the calling code. (Note: sometimes you can just use the returned value in an expression, without bothering to store it in a variable.)
Another, less common, way for a function to send information back to its caller is by using pointers. This second way is useful in either of the following situations:
1. You want to send more than one piece of information back from the function.
2. The information being sent back is part of a large thing, e.g. an array or a structure.
See Using Pointers To Save Time and Space for more about the latter. We’ll focus on:

Situation: You want to send more than one piece of information back from the function.
Here’s how to do this:
· The caller has a variable of the right type to contain the information. For example:
	float r;
· The caller passes the address of that variable to the function. For example:
	foo(..., &r, ...);
· The function has a pointer of the right type as its corresponding parameter. For example:
	void foo(..., float* p, ...) {
	 ...
	}
· The function sets the pointer’s pointee (which is the variable in the caller) as desired. For example:
	*p = ...;
See the Example for a continuation of this discussion.
