
 Using Pointers to Save Time and Space Page 1

1. Using a pointer to simulate an array.

One way to declare an array’s length at run-time, that is, when the space-allocation
statement executes, is to use a feature called “variable length arrays (VLA’s)” that the most
modern version of C (called C99) provides. Here is an example:

temperatures

In the above, temperatures is a full-fledged array. However, If you have an older compiler
(pre-C99), or if you are in one of the (infrequent) circumstances in which VLA’s are not
allowed in C99, or if you need an array-like object that can change its length as execution
progresses, the above VLA solution is not available. Instead, the solution is to simulate an
array using a pointer. Here is an example:

Technically, temperatures in the above code is a pointer and not an array. However,
you can (and should) use temperatures with the same bracket notation that you use
for arrays, as shown in the example. Thus, the pointer simulates an array.

int length;

printf("How many temperatures will you enter? ");

fflush(stdout);

scanf("%i", &length);

double temperatures[length];

This statement cannot be placed
earlier in the code – it must appear
only after the variable length has been
assigned a meaningful value.

int length, k;

double *temperatures;

printf("How many temperatures will you enter? ");

fflush(stdout);

scanf("%i", &length);

temperatures = (double*) malloc(length * sizeof(double));

for (k = 0; k < length; ++k) {

 ... temperatures[k] ...

}

The malloc function allocates the requested amount
of space and returns a pointer to that space.

In this example, each
entry of the simulated
array will hold a double.

Allocate space for
this many entries in
the simulated array.

The malloc function returns a pointer
to the space – note the asterisk.

After the malloc statement, treat the
pointer as if it were an array, that is, use
the bracket notation that arrays use.

 Using Pointers to Save Time and Space Page 2

There are several important differences between a pointer that simulates an array and an
actual array:

1. Whenever you use malloc to allocate space, you are responsible for de-allocating
that space when you are done with it, that is, to return it to the operating system.
Failing to do so is called a memory leak – as the program runs, space “leaks” out of
the operating system into the program until the operating system runs out of space
and the program crashes (or the system grounds to a crawl).

You use the free function to de-allocate space, as in this example:

After the free statement, temperatures still points to the same space to which
it previously pointed, but the contents of that space may change in whatever way
the operating system chooses. Thus, it is safer to reset temperatures to the

special value NULL, which means that temperatures no longer points to
anything. You have to #include <stdio.h> for NULL to be defined.

For every malloc, there should be a corresponding free.

2. A pointer that simulates an array can be reassigned, where an array cannot. So, if
the size of the simulated array needs to change, you can do so like this:

If there is danger that realloc cannot assign the new space (e.g., if the requested
amount of space is larger than the operating system has available), then you should
guard against this as described in http://c-faq.com/malloc/realloc.html.

3. With an actual array, you can initialize the contents of the array like this:

No such notation is available for a pointer that simulates an array.

temperatures = realloc(temperatures, newLength * sizeof(double));

double *temperatures;

 ...

temperatures = (double*) malloc(length * sizeof(double));

 ...

free(temperatures);

temperatures = NULL;

Allocates space and sets
temperatures to point to the space.

De-allocates the space to which temperatures
points, that is, returns to the operating system the
space that was previously allocated by malloc.

float weights[] = {45.7, 900.4, 32.8, 74.3};

char name[] = "Nelson Mandela";

http://c-faq.com/malloc/realloc.html

 Using Pointers to Save Time and Space Page 3

2. “Ragged” two-dimensional arrays – an application of using pointers to simulate arrays.

A “ragged” two-dimensional array is one in which the lengths of the rows vary, like this:

 99 40 17 88

 15 8 45

 66 48 22 29 30 95 76 80

 10 74 5 99

Here is how one codes a ragged array:

This example continues on the next page.

int numberOfRows, numberOfColumns, j, k;

int* rowLengths;

double** matrix;

printf("How many rows will you need? ");

fflush(stdout);

scanf("%i", &numberOfRows);

rowLengths = (int*) malloc(numberOfRows * sizeof(int));

matrix = (double**) malloc(numberOfRows * sizeof(double*));

for (j = 0; j < numberOfRows; ++j) {

 printf("How many columns do you need in row %i? ", j);

 fflush(stdout);

 scanf("%i", &numberOfColumns);

 matrix[j] = (double*) malloc(

 numberOfColumns * sizeof(double));

}

for (j = 0; j < numberOfRows; ++j) {

 for (k = 0; k < rowLengths[j]; ++k) {

 matrix[j][k] = 0;

 }

}

A one-dimensional array (simulated
by a pointer) whose entries specify
the lengths of the rows of the two-
dimensional array.

The two-dimensional array, really
an array (the rows, simulated by a
pointer) of arrays (for each row, the
columns, simulated by pointers).

Allocate space
for the array
of row lengths.

Allocate space for the rows in
the two-dimensional array.

For each row, ask the user how many
columns are needed for that row.

Then allocate space for those columns. Note that
matrix[j] is the jth row of the two-dimensional array.

An example showing how you can
use the (simulated) two-dimensional
array with the bracket notation.

 Using Pointers to Save Time and Space Page 4

3. Passing an array to a function – another application of using pointers to simulate arrays.

When you send an array to a function, the compiler actually sends a pointer whose value is
the address of the first element in the array. This has three important consequences:

1. The function call is fast – even with an array of many thousands of elements, only a
single thing (the address of the first element in the array) is copied and sent to the
function.

2. The function can modify the elements of the array, and those modifications will still
be in effect after control returns to the caller.

3. Usually, you also pass the length of the array to the function, since arrays do not
know their length.

You don’t need to know anything else about pointers to pass arrays to functions, since the
compiler allows you to continue to use array notation (square brackets), like this:

void printArray(float numbers[], int length) {

 int k;

 for (k = 0; k < length; ++k) {

 printf("%f\n", numbers[k]);

 }

}

int lengthOfWeightsArray = 400;

float weights[lengthOfWeightsArray];

 ...

printArray(weights, lengthOfWeightsArray);

Pass the array by putting its name as the
argument, WITHOUT brackets. The
name of the array is really a pointer.

If you will loop through
the array in the
function, you need to
pass the array’s length,
as in this example.

Indicate that the parameter is an
array by putting square brackets after
the array name.

Don’t put anything inside the square
brackets – the compiler ignores
anything there, so putting something
there only misleads the reader.

You use the array using the usual bracket notation, even though
this is really a pointer simulating an array.

 ...

for (j = 0; j < numberOfRows; ++j) {

 free(matrix[j]);

}

free(rowLengths);

free(matrix);

When you are done with the two-
dimensional array, you must “free”
(i.e., return to the operating system)
all of the array’s space that was
allocated with malloc.

