

Getting Input From the User by Using scanf	Page 3
[bookmark: Discussion]Discussion: C has primitive types like int, double, and char. Each holds a single “thing”. C also has a concept called structures that allows the programmer to define her own aggregate types built from primitive types and other programmer-defined types.
For example, the programmer can define a Dog structure type that contains the Dog’s age, weight and name.

Example: Here is a structure called Dog that has three components (called fields): an int that is the Dog’s age, a float that is the Dog’s weight, and a string (character array) that is the Dog’s name:
 (
typedef

struct
 {

int

age
;

float

weight
;

char

name
[10];
}
Dog
;
int

main
() {

Dog
 dog1;

Dog
 dog2 = {12, 40.3,
"lassie"
};

dog1.
age
 = 4;

dog1.
weight
 = 90.5;

strncpy
(dog1.
name
,
"marmaduke"
, 10);

printf
(
"Dog 1 is named %s. Its age is %i and weight is %f\n"
,

dog1.
name
, dog1.
age
, dog1.
weight
);

printf
(
"Dog 2 is named %s. Its age is %i and weight is %f\n"
,

dog2.
name
, dog2.
age
, dog2.
weight
);
}
) (
Defines a structure
 called
Dog
 with three fields.
)

 (
Declares a structure variable
 called
dog1
 whose type is
Dog
. Per the definition above of the Dog structure, this variable is a composite of 3 things: an
int
, a
float
, and a
string
.
)

 (
Declares a variable called
dog
2
 whose type is
Dog
 and
initializes its three fields
.
)

 (
Initializes the fields of
dog
1
. Note the “
dot
” notation for
refe
rring
 to a structure variable’s fields
.
)

A C structure variable is a weak version of an object in object-oriented (OO) languages. An object has data associated with it and operations it can do. A structure variable has only data associated with it; it cannot do any operations itself.

 (
Note especially the placement of the
curly-braces

and the
concluding semi-colon
. O
mitting the semi-colon creates many hard-to-decipher compile
-time
 error messages!
)Defining a structure type:
 (
Example
:
typedef

struct
 {

int

age
;

float

weight
;

char

name
[10];
}
Dog
;
) (
Notation:
t
ypedef

struct

{

TYPE
 FIELD_
NAME
;
 ...
 TYPE FIELD_NAME;
}
 STRUCTURE_NAME
;
)

Define the structure type at the top level of the file (i.e., not inside main or any other function), so that it can be used anywhere in the file.
The types of the fields can themselves be structures, as well as arrays (as in example above) or pointers (which can simulate arrays).
There are other notations for defining structures, but the above approach is clearest. Use it.

Declaring a structure variable (aka instance): Proceed just like for primitive types.
 (
Examples
:
Dog
 dog1;
Cat
 cat1, cat2, cat3;
Point
 points[30];
Dog
*
 pointerToDog;
)
 (
One
Dog
 variable.
Three
Cat
 variables.
One
Point
 array, with 30 Point’s.
One pointer to a
Dog
 .
)

Accessing the fields of a structure variable: Use the “dot” notation, like this:
 (
Then you could have statements like:
Dog
 dog1, dog2
;
dog1.
weight
 = 30.2;
scanf
(
"%i"
, &(dog1.
age
));
dog2.
age
 = dog1.
age
 - 3;
strcpy
(dog1.
name
,
"buster"
);
) (
Example
:
 Suppose you have:
typedef

struct
 {

int

age
;

float

weight
;

char

name
[10];
}
Dog
;
)

That is, you put the structure variable name, then a dot, then the field name.

Accessing the fields of a pointer to a structure variable: If you have a pointer to a structure variable, you can refer to its pointee using the usual asterisk (*) for dereferencing and the above dot notation.
For example, given a Dog variable per the above definition of Dog , you could have statements like:
 (
Example of
:
Dog
 dog1, dog2
;
dog1.
weight
 = 30.2;
scanf
(
"%i"
, &(dog1.
age
));
dog2.
age
 = dog1.
age
 - 3;
strcpy
(dog1.
name
,
"buster"
);
)

That is, you put the structure variable name, then a dot, then the field name.
 “Arrow” notation for accessing fields of a pointee.
Gotcha: using dot when you mean arrow or vice versa.

Passing a structure variable to a function: by value. Pass a pointer if either: need to modify the fields, or want to save the time/space of copying fields, or want to mimic the way that objects work in Python and Java.
Gotcha: forgetting that if a field is an array or pointer, it …

Gotcha’s: The scanf function is easily abused, often resulting in hard-to-debug errors:
1. Wrong number of arguments: If there are not exactly as many addresses of variables as there are format specifiers in the format string, most compilers give no warning. Instead, the program will put garbage values into the variables or crash when the scanf executes.
	Example errors: scanf("%i %f", a);
		 	 // Two format specifiers, but only one variable
			 scanf("%i", a, b, c);
		 	 // One format specifier, but three variables
2. Wrong type of variable/format specifier: If any variable whose address is given does not match its corresponding format specifier, most compilers give no warning. Instead, the program will put garbage values into the variables or crash when the scanf executes.
	Example error: using %f instead of %lf to input into a variable of type double:
			 double blah;
			 scanf("%f", &blah);	// Need %lf here
3. Malformed data: If the user enters malformed data (for example, enters “four” in response to a %i), the program generally continues without an error message but puts garbage data in that variable and in variables subsequently input from the user.
4. String overflow: When entering a string (format specifier %s), if the user enters more characters than the character array has allocated, the extra characters overflow the array without any warning, wiping out whatever happens to be stored in memory after the character array. The result can be an immediate crash, mysterious changes in values of other variables, or a delayed crash – all hard to debug.
	Example error: 	int age = 12;
				char name[5];
				scanf("%s", name);
If the user enters a word longer than 4 characters for the name, the program may crash or corrupt the age variable (or some other variable in the program).
The input word must be at most 4 (not 5) characters long, to leave space for the ‘\n’ that denotes the end of a C string – scanf inserts that ‘\n’ automatically.
Note that the program MAY crash or corrupt variables if the input word is too long, but it also might work correctly until changes to the program move the placement of variables in memory. So if your program suddenly stops working correctly, consider the possibility that in code you previously wrote, you went past the end of an array.
5. Other characters in the format string: The first argument to scanf, that is, its format string, can be more elaborate than described above. However, until you know more about the format string for scanf, stick to the form in the above example: a sequence of %blah format specifiers, each of which is as described above, separated by spaces.
	Example error: scanf("%i, %f, %i", a, x, b);
// Avoid commas in the format string – doing so requires
// that the user put commas in their input.
Another example: The following code has two functions, each of which gets a floating-point number from the user using scanf. Note the two different ways by which the functions send back the input number to the caller.
 (
#include

<stdio.h>
#include

<stdlib.h>
float

getInputOneWay
();
void

getInputAnotherWay
(
float
* b);
int

main
() {

float
 x, y;
 x = getInputOneWay();
 getInputAnotherWay(&y);

printf
(
"%f %f\n"
, x, y);
// Demonstrates that the function calls worked

return
 EXIT_SUCCESS;
}
// Prompt for and input a floating-point number from the user
// and return the number that was inputted.
float

getInputOneWay
() {

float
 a;

printf
(
"Enter a floating-point number: "
);

fflush
(stdout);

scanf
("%f", &a);

return
 a;
}
// Prompt for and input a floating-point number from the user and use
// the pointer parameter to send the input number back to the caller.
void

getInputAnotherWay
(
float
* b) {

printf
(
"Enter a floating-point number: "
);

fflush
(stdout);

scanf
("%f", b);
}
)

In response to this scanf, the user might enter:
	45.3 -12 8790 4.9999 HelloHowAreYou?

 (
Test your understanding: Do you see why there MUST be an ampersand in the
scanf
 in
getInputOneWay
 but MUST NOT be an ampersand in the
scanf
 in
getInputAnotherWay
?
If not, you might want to reexamine
Using Pointers to Send Information Back From a Function
.
)

