
Box-and-Pointer Diagrams – How to make and use them in C Page 1

Summary:
1. In a box-and-pointer diagram, ordinary variables have a box associated with them,

depicting the place in memory where the variable’s value is stored. We draw the variable’s
value inside the box.

2. Pointer variables also have a box associated with them. However, pointer variables have a
memory location as their value. Hence, we don’t put a value inside the box for a pointer
variable; instead, we draw an arrow from that box to the box at the location specified by
the pointer. That is, we draw an arrow from the pointer to its pointee.

3. Notation for pointers:

 We declare pointer variables by appending an asterisk to their type:

 double* px;

 For any variable x, the notation &x means the address (i.e., location) of variable x:

 double x = 15;

 double* px; Note how pointer variables are declared:

 px = &x; Establishes the pointer’s pointee.

 We refer to a pointer’s pointee by the notation *px.

For example, the following statement (continuing the
example above) increments variable x, since x is px’s
pointee.

 *px = *px + 1;

4. Space for variables is allocated in several ways, including:

 Declaring a local variable creates a box for the variable.

 Calling a function creates boxes for each of the parameters of the function. The initial
values of those boxes are copies of the boxes of the corresponding actual arguments in
the function call.

Here is an example (on the next page):

Don’t be confused by these two
uses of asterisk: one to declare that
a variable is a pointer, and the other
to refer to the pointer’s pointee
(which we call dereferencing).

x 15

x

px

15

Box-and-Pointer Diagrams – How to make and use them in C Page 2

These declarations: create these boxes:

Subsequently, put values into the boxes
these assignments: (the boxes contain garbage
 values until the assignments):

Now suppose there is a function foo whose prototype is as follows:

Continuing the example, this function call:

creates and initializes the additional boxes show below in blue.

The boxes created by the function call are new boxes; the variable called x in function foo
has nothing to do with the variable called x in the calling code.

The new boxes are initialized by copying the values from the caller’s boxes. Copying a
pointer’s value means creating a new arrow that points to the same place as the old
arrow.

int;

int;

int* p;

foo(x, y, p);

x = 10;

y = 7;

p = &x;

x

y

10

7

p

void foo(int a, int x, int* r) {

 ...

}

x

y

p

x

y

10

7

p

a

x

10

7

r

