
Box-and-Pointer Diagrams – How to make and use them in C Page 1

Discussion: Box-and-pointer diagrams help you trace by hand and understand code,
especially code that features pointers (and/or arrays, which can be thought of as pointers).

The concepts that follow apply to both C and Python (and also to other languages), but some of
the details are particular to C.

a. Variables are stored at locations (aka addresses) in memory. For example, the
declarations

 double x;

 double y;

allocate storage for two double-precision floating-point numbers. We notate this using
the box part of a box-and-pointer diagram:

The boxes are shown as empty to indicate that the values of the variables are garbage
at this point; the variables have been declared but not initialized. Their values are
whatever bits happen to be in memory at those locations.

b. There are two ways to put values into variables. The simplest is ordinary assignment,
e.g.:

 x = 15;

 y = x;

This puts the value on the right-hand-side of the assignment into the location specified
by the left-hand-side of the assignment. We notate this by:

Note that the second assignment (y = x) copies the bits from the location specified by
x to the location specified by y. There is no association between x and y; they simply
happen to contain the same bits in this example. For example, the subsequent
statement:

 y = 23;

causes the diagram to change to:

x

y

x

y

15

15

x

y

15

23

Box-and-Pointer Diagrams – How to make and use them in C Page 2

c. A second way to put values into variables is to make a function call. Consider:

void foo(double a, double x) {

 ...

}

and consider the function call:

 foo(x, y);

where x and y each have values 15 and 23, respectively (as shown above). This function
call causes the following to happen:

Step 1: Space is allocated in memory for variables named a and x (the parameters
of function foo).

 Memory allocated by main Memory allocated when
(or wherever the function call occurs): the foo function is called:

Note that the space allocated for the x associated with foo has nothing to do
with the space allocated for the x in main – variables are local to their function.

Step 2: The memory locations allocated for a and x are assigned values by copying
the bits from the actual arguments (x and y) into the corresponding parameters
(a and x).

 Memory allocated by main Memory allocated when
(or wherever the function call occurs): the foo function is called:

You should now understand exactly what happens when a
function is called. If not, please ask now.

x

y

15

23

a

 x

x

y

15

23

a 15

23 x

Box-and-Pointer Diagrams – How to make and use them in C Page 3

d. The compiler, along with its run-time associate the linker, determines where in memory
your variables are stored. All you can count on is:

i. Once space is allocated for a variable, the variable refers to the same space for
its entire lifetime.

ii. Each element in an array is in the next location in memory from the previous
element of the array.

e. In C, unlike most languages, your program can find out where a variable is stored in
memory, by using the & (“address of”) operator. For example, consider the code:

 double x;

 ... &x ...

The value of the expression &x is the location (aka address) in memory where x is
stored. For example, if x happens to be stored at location (say) 20480012, then the
value of &x is 20480012.

f. Pointer variables are variables whose value is a location (aka address) in memory. For
example:

 double x = 15;

 double* px; Note how pointer variables are declared:

 px = &x; you just append an asterisk to the type.

In this example, the pointer variable px has as its value the location in memory where x
is stored. We notate this with the pointer part of a box-and-pointer diagram:

We don’t put a value inside the px box, because we don’t know that value (the compiler
and linker chose it). However, we do know that the value in the px box is the location in
memory of the x box, so we draw an arrow in the px box that points to the x box.

g. C uses the notation *px to refer to the pointee of px – that is, the box that pointer
variable px points to. Continuing the above example, the statement:

*px = 42;

causes the box-and-pointer diagram to change to:

Thus, the statement *px = 42 has the effect of changing the value of variable x to 42.

x

px

15

x

px

42

Box-and-Pointer Diagrams – How to make and use them in C Page 4

h. Assignment with pointers works just like assignment with ordinary variables, except that
since we notate the contents of pointer boxes by using arrows, assignment of pointers
causes the arrows to change.

For example, continuing the above example, first consider the statements:

 double y = 42;

 double* p2;

 p2 = &y;

This causes our box-and-pointer diagram to extend to:

Now consider the effect of the assignment:

 px = p2;

Just as with non-pointer variables, this copies the bits in p2’s box into px’s box.
However, we note the bits in pointer boxes by arrows. Hence, copying the bits in p2’s
box into px’s box has the effect of making the arrow from px’s box point to the same
place that the arrow from p2’s box points to:

At this point, both px and p2 are pointers to y’s box. Hence, all three of the following
statements have the same effect at this point:

 y = 23;

 *px = 23; They all change the contents of the y’s box to 23.

 *p2 = 23;

i. So far, we have ignored the question of why pointers are valuable. Briefly:

• Having parameters that are pointers allows us to send back information from the
function to the code that called the function. See How to Use Pointers to Send
Information Back From a Function for an example of this.

• The value of a pointer variable is a location. Sometimes that location is the
beginning of many chunks of related data, as in an array or a structure instance. If
we want to send that data to a function, it saves both time and space to pass a
pointer to the beginning of that data instead of passing all of the data itself. See
How to Use Pointers to Save Time and Space for more about this.

If you have questions about the above discussion, please ask now!

x

px

15

y

p2

42

y

p2

42

x

px

15

