
 Arrays Page 1

Discussion: An array is a collection of data stored contiguously in memory. You refer to

the elements of the array by using the array name and subscripts, e.g.:

 blah[0] blah[1] blah[2] ... blah[n-1]

where blah is the name of this array and the array has n elements (numbered 0 through n-1).

This document explains how to:

1. Allocate space for an array

2. Initialize the elements of an array

3. Access the elements of an array

4. Send an array to a function, as a
parameter

5. Use two-dimensional arrays.

6. Use a pointer to simulate an array.

Also see these other documents:

 Some Gotcha’s (common errors
when using arrays)

 Some common Array Patterns

 Some Practice Problems on arrays

1. Allocating space for an array: Declare and allocate space for an array with the same
type/name pattern that you use for declaring other variables, but:

 Indicate that it is an array by appending square brackets to the name, and

 Specify the length of the array by putting the length inside the square brackets.

For example:

Note the last example: in the most
modern version of C (called C99), the
length of the array can be determined
at run-time, that is, when the space-allocation statement executes. Be aware that older
compilers will NOT allow this and that there are some restrictions on its use.

Alternatively, you can simulate an array using pointers and use malloc or one of its cousins to
allocate space for the simulated array. This works in all versions of C (not just C99).

Per the above examples, elements of an array must all be of the same type.

double numbers[100];

char name[500];

Cat cats[10];

Dog* dalmations[101];

int ages[length];

100 numbers, each of type double

500 characters (hence room for a
string of up to 499 characters plus
the ‘\0’ that terminates a string

10 instances of
the Cat structure

101 pointers, each capable of pointing
to an instance of the Dog structure

As many numbers, each of type int, as the value of variable
length. For this to work correctly, the length variable must
have a non-garbage value when this statement is encountered.

commonErrors.pdf
arrayPatterns.pdf
practiceProblems.pdf
../UsingPointersToSaveTimeAndSpace/discussion.pdf#UsingPointersToSimulateArrays

 Arrays Page 2

2. Initializing the elements of an array: When you allocate space for an array (as in the above
statements), the initial values of the array elements are, in general, garbage. So, you
should initialize the array elements yourself.

One way to do so is to list the values when you allocate space for the array, e.g.:

 float weights[] = {45.7, 900.4, 32.8, 74.3};

 char name[] = "Nelson Mandela";

You don’t need to specify the length of the array when you use this form; the compiler sets it
for you to the number of items in the curly-brackets or quotes. For strings initialized this way,
the array includes the '\0' that terminates the string; thus, the length of the name array in
the above example is 15, not 14.

However, the usual way to initialize the array
elements is to loop through all the elements of the
array, setting each one in turn.

For example, you could initialize all the values of a
dieRolls array to random values between 1 and 6,
as in the example to the right.

Or, you could ask the user for the length of the array, then for the initial values of the elements
of the array, as in the example below:

Note that arrays do not remember their length – you are responsible for maintaining that
length in a variable and using it as needed.

int length, k;

printf("How many temperatures will you enter? ");

fflush(stdout);

scanf("%i", &length);

double temperatures[length];

for (k = 0; k < length; ++k) {

 printf("Enter a temperature: ");

 fflush(stdout);

 scanf("%lf", &(temperatures[k]));

}

This statement cannot be placed
earlier in the code – it must appear
only after the variable length has been
assigned a meaningful value.

int k;

int length = 1000;

int dieRolls[length];

for (k = 0; k < length; ++k) {

 dieRolls[k] = 1 + rand() % 6;

}

 Arrays Page 3

3. Accessing elements of an array: Access elements of an array using the “subscript”
notation:

 blah[0] blah[1] blah[2] ... blah[n-1]

where blah is the name of this array and the array has n elements (numbered 0 through n-1).

Often, we use a loop and an index variable to go through all the elements of the array, as in
both of the examples in the previous section. Here is another example, assuming that length is
indeed the length of the array.

The index variable in the example is k – note that it starts at 0 and goes up to (but NOT
including) length. Note the use of temperatures[k] inside the loop – very typical.

See the Gotcha’s (common errors) for what can happen when you access an array element with
a subscript whose value is outside of the bounds of the array.

See Array Patterns for more array patterns and examples.

4. Sending an array to a function, as a parameter: When you send an array to a function, the
compiler actually sends a pointer whose value is the address of the first element in the
array. This has three important consequences:

1. The function call is fast – even with an array of many thousands of elements, only a
single thing (the address of the first element in the array) is copied and sent to the
function.

2. The function can modify the elements of the array, and those modifications will still
be in effect after control returns to the caller.

3. Usually, you also pass the length of the array to the function, since arrays do not
know their length.

You don’t need to know anything else about pointers to pass arrays to functions, since the
compiler allows you to continue to use array notation (square brackets), as in this example (on
the next page):

for (k = 0; k < length; ++k) {

 printf("%f\n", temperatures[k]);

}

Loop starts at 0 and goes up to
(but NOT including) length.

commonErrors.pdf
arrayPatterns.pdf

 Arrays Page 4

 void printArray(float myArray[], int length);

void sortArray(float myArray[], int length);

int main() {

 int lengthOfWeightsArray = 400;

 float weights[lengthOfWeightsArray];

 int lengthOfVolumesArray = 150;

 float volumes[lengthOfVolumesArray];

 // Code here would set the values of the

 // above arrays, from a file or whatever.

 sortArray(weights, lengthOfWeightsArray);

 printArray(weights, lengthOfWeightsArray);

 sortArray(volumes, lengthOfVolumesArray);

 printArray(volumes, lengthOfVolumesArray);

 return EXIT_SUCCESS;

}

// Sorts the given array from smallest to largest.

void sortArray(float myArray[], int length) {

 int j, k, indexOfMin;

 float temp;

 for (j = 0; j < length - 1; ++j) {

 indexOfMin = j;

 for (k = j + 1; k < length; ++k) {

 if (myArray[k] < myArray[indexOfMin]) {

 indexOfMin = k;

 }

 }

 temp = myArray[j];

 myArray[j] = myArray[indexOfMin];

 myArray[indexOfMin] = temp;

 }

}

// Prints the given array.

void printArray(float myArray[], int length) {

 int k;

 for (k = 0; k < length; ++k) {

 printf("%f\n", myArray[k]);

 }

}

Indicate that the parameter is an
array by putting square brackets after
the array name.

Don’t put anything inside the square
brackets – the compiler ignores
anything there, so putting something
there only misleads the reader.

Pass the array by putting
its name as the argument,
WITHOUT brackets.

As in the prototypes above,
indicate that the parameter is an
array by putting square brackets
after the array name, WITHOUT
anything inside the brackets.

If you will loop through
the array in the function,
you need to pass the
array’s length, as in
these examples.

Use ordinary array notation (square
brackets with the index inside
them) inside the function.

 Arrays Page 5

5. Two-dimensional arrays: A two-dimensional array can be thought of as a grid of rows and
columns and is sometimes called a matrix. Here are examples to show:

 How to declare a two-dimensional array:

 How to access elements in a two-dimensional array:

 How to send a two-dimensional array to a function, as a parameter:

for (j = 0; j < nRows; ++j) {

 for (k = 0; k < nColumns; ++k) {

 printf("%f\n", blah[j][k]);

 }

}

float blah[100][50];

Use blah[j][k]

NOT blah[j, k]

Note the loop-within-a-loop pattern
for processing all the elements of the
two-dimensional array.

This example assumes that nRows
is the size of the first dimension
(100 in the above example

declaration) and nColumns is the
size of the second dimension (50 in
the above example declaration).

void printArray1(float blah[][50], int nRows) (

 int j, k;

 for (j = 0; j < nRows; ++j) {

 for (k = 0; k < 50; ++k) {

 printf("%f\n", blah[j][k]);

 }

}

void printArray2(int nRows, int nCols, float blah[nRows][nCols]) (

 int j, k;

 for (j = 0; j < nRows; ++j) {

 for (k = 0; k < nCols; ++k) {

 printf("%f\n", blah[j][k]);

 }

}

// Function calls (e.g. in main):

 printArray1(blah, 100);

 printArray2(100, 50, blah);

IMPORTANT: You MUST specify the size of
the second dimension (50 in this example).
For multi-dimensional arrays, you must
specify the size of all the dimensions except
for the first. If you are curious why this is so,
see http://c-faq.com/aryptr/pass2dary.html

In the most modern version of C (called C99),
the sizes of the dimensions can be
parameters, as shown here. But:

1. You must declare the size parameters
BEFORE (i.e., to the left of) their use
inside the brackets, as shown here.

2. Be aware that older compilers will
NOT allow this.

http://c-faq.com/aryptr/pass2dary.html

 Arrays Page 6

6. Using a pointer to simulate an array:

We saw in the above section on Allocating space for an array that the most modern version
of C (called C99) allows “Variable Length Arrays” (VLA’s). In a VLA, the length of the array
can be determined at run-time, that is, when the space-allocation statement executes.

However, if:

 you have an older compiler (pre-C99), or

 you are in one of the (infrequent) circumstances in which VLA’s are not allowed in
C99, or

 you need an array-like object that can change its length as execution progresses,

then the VLA solution is not available. Instead, the solution is to simulate an array using a
pointer.

See Using a Pointer to Simulate an Array in Using Pointers to Save Time and Space for how
to do this. The discussion there also explains two applications of using pointers to simulate
arrays:

o Two-dimensional “ragged arrays” in which the lengths of the rows vary from row
to row (this is especially handy for inputting and storing lines of text).

o Passing an array to a function.

For further discussion about arrays, see:

 Gotcha’s (common errors when using arrays).

 Some common Array Patterns.

 A Summary of this document.

 Some Practice Problems on arrays.

If you are curious to learn more about arrays (and only if you are curious – the material in this
tutorial covers all of the common issues with arrays), you can also see lots of details about
arrays and their curious relationship to pointers in:

 http://c-faq.com/aryptr/index.html

../UsingPointersToSaveTimeAndSpace/discussion.pdf#UsingPointersToSimulateArrays
file:///C:/David/120R/Public/Resources/C/UsingPointersToSaveTimeAndSpace/index.html
commonErrors.pdf
arrayPatterns.pdf
summary.pdf
practiceProblems.pdf
http://c-faq.com/aryptr/index.html

