
 Arrays Page 1

Gotcha’s when using arrays: Avoid these hard-to-debug errors!

1. Treating blah[1] (instead of blah[0]) as the first (beginning) element of the array,
e.g.:

2. Accessing an array with a subscript whose value is outside of the bounds of the array, for
example:

o Using blah[k] when k has not been assigned a value (hence is garbage), e.g.:

o Using a loop that goes one past the end of the array, e.g.

When you access an array with a subscript whose value is outside of the bounds of the
array, any of the following are possible:

• The program runs but with a garbage value (often 0) for the array element.

• The program crashes (because the space outside the array that was accessed is
system memory).

• Another variable in the program
changes its value mysteriously!

• Behavior oscillates among the above,
seemingly at random!

For example, consider the function
to the right. What do you think that
the function should print?

for (k = 0; k <= length; ++k) {
 ... temperatures[k] ...
}

for (k = 1; k < length; ++k) {
 ... temperatures[k] ...
}

Should be 0, for the loop
to go through the entire
array as intended.

Should be < (not <=).

void arrayOutOfBounds() {
 int a;
 int foo[1];

 a = 1;
 foo[1] = 99;

 printf("%i\n", a);
}

int k;
double blah[10];

blah[k] = 0;

The author of this code meant to loop through
the 10 elements of the array, setting each to 0,
but the author forgot to include the loop.

 Arrays Page 2

It looks like it should print 1, since that appears to be the value to which a is set. But when
I ran the above, it printed 99 for a, not 1!

Here’s why: The compiler happened to store the variable a immediately after the array
foo. The declaration of the array allocates space for only one integer, to be accessed as
foo[0]. So the assignment

 foo[1] = 99;

accesses the place right after the place for foo[0], which happens to be where variable a
is stored. So the above statement changes the value of a!

Even worse, suppose that you modify the program, changing the

 int a;

statement to

 int a, b;

and making no other mention of b in the program. You would expect that this modification
would have no effect on the program (since b is not used at all), but now the program will
probably print the correct value for a (namely, 1), because the out-of-bounds array access
happens to access b now, not a.

Bottom line:

• Try hard to avoid these out-of-bounds array accesses, since they are so hard to
debug.

• If your program behaves in ways that seem “impossible”, suspect that
somewhere in your program you have accessed an array out of bounds (or
misused a pointer, which is a similar error).

3. Forgetting to store the length of the array, or storing it with a wrong value.

4. Forgetting to send the length of the array to a function that needs it, or putting an integer
inside the brackets in an array that is sent to a function, e.g.:

When you send an array to a function, you are really sending a pointer whose value is the
address of the first element in the array. Arrays do not know their length.

void printArray(float myArray[15]) {
 int k;

 for (k = 0; k < 15; ++k) {
 printf("%f\n", myArray[k]);
 }
}

The author of this code appears to
think that writing:
 myArray[15]
here indicates that the array has
length 15, but in fact the 15 is ignored.

Hence the loop might go beyond the
end of the array or might go through
only a portion of the array, depending
on what the real length of the array is.

 Arrays Page 3

5. When allocating space for an array using a variable for the array’s length, putting the
statement that allocates space before the length variable gets it correct value, e.g.:

6. Not allocating enough space for the ‘\0’ that terminates a string. For example:

The blah string has space for only 3 real characters, given that it needs a '\0' to
indicate the end of the string. The strcpy copies 4 real characters (they fit fine), plus a
'\0' that extends beyond the blah array. This is an out-of-bounds error and may
result in any of the behaviors described in Gotcha #2 above. When I ran this code, it
overwrote the a variable and printed 0 (not 999).

7. Using strcpy (or any of its cousins) when you don’t know the lengths of its arguments. For
example, you must be very careful when using statements like this:

 strcpy(blah, whatever);

• This is dangerous if you don’t know the length of the blah string array – it might not
have space enough for the copy of the whatever string, as in the previous example.

• It is also dangerous if you don’t have control over the length of the whatever string –
its copy might not fit in the space allocated for the blah string. An extreme example
of this is when the whatever string doesn’t have a terminating '\0' (so strcpy
thinks that its length is infinite).

In either case, if the copy of whatever doesn’t fit in the space allocated for blah, the strcpy
function will blithely continue beyond the bounds of the blah array. This is an out-of-
bounds error and may result in any of the behaviors described in Gotcha #2 above. Many
viruses take advantage of this “buffer overrun” phenomenon, especially when the whatever
string is an input to the program.

The strncpy function (and its cousins) is sometimes helpful in such situations.

int length, k;
double temperatures[length];

printf("How many temperatures will you enter? ");
fflush(stdout);
scanf("%i", &length);

Space for the array is (incorrectly) allocated
here, when length still has a garbage value.
This statement should be placed after the
scanf below that sets the value for length.

int a = 999;
char blah[4];

strcpy(blah, "oops");

printf("%i\n", a);

Putting 4 “real” characters into a string requires
a string array whose length is 5 (not 4).

 Arrays Page 4

8. Explicitly specifying the length of the array when you specify the initial contents of the array
in the same statement, e.g.:

9. Returning a statically-allocated array from a function, e.g.:

If you use this function, e.g. with the statement:

 char* name = wrongWayToReturnAnArray();

the name array may have its contents corrupted at any point in the subsequent execution.

If you want to return storage for an array (more precisely, for a pointer that is simulating an
array), you must use malloc or one of its cousins. See how to simulate an array using
pointers in Using Pointers to Save Time and Space for more details.

char x[] = "one";

char y[3] = "one";

This is correct – let the compiler determine the
length of the array (which is 4, not 3, since the
compiler inserts the terminating '\0' character.)

This is WRONG – it sets the length of the array to 3,
which means that the terminating '\0' is not
placed into the array. The result is that the standard
string functions will not operate correctly on y.

char* wrongWayToReturnAnArray() {
 char foo[100];
 ...
 return foo;
}

 Arrays Page 5

10. “Off by 1” errors.

For example, consider the following code, which attempts to determine whether an array is
a palindrome (i.e., whether or not it reads the same backwards as forwards). It has two “off
by 1” errors, shown in red.

The best way to avoid such “off by 1” errors is to trace the code on one or more small,
concrete examples. For example, here you should try arrays of length 4 and 5. (You should do
both odd and even lengths because of the division by 2 in the for statement.) The examples
would both expose the errors and show you how to correct them.

11. Abusing two-dimensional arrays, or arrays of pointers, or pointers to an array, or pointers
used to simulate an array.

There are lots of ways to make these sorts of errors. I’ll point out just two:

void printArray1(float blah[][], int nRows) (
 ...
}

void printArray2(float blah[nRows][nCols], int nRows, int nCols) (
 ...
}

WRONG: You MUST specify the
size of the second dimension, e.g.
float blah[][100].

WRONG: Using a variable to specify the second dimension of a two-dimensional array is allowed
in the most modern version of C (called C99). However, if you do so, the declaration of that
variable (nCols in this example) must precede its use as a dimension, like this:
void printArray2(int nRows, int nCols, float blah[nRows][nCols]) (

int k;
int isPalindrome = 1;

for (k = 0; k < (length – 1) / 2; ++k) {
 if (blah[k] != blah[length - k]) {
 isPalindrome = 0;
 break;
 }
}

if (isPalindrome == 1) {
 ...
} else {
 ...
}

Should be k < length / 2

Should be blah[length – 1 – k]

