
CSSE 120 Before-the-Coding Quiz-03 Page 1 of 4

Your name:_____________________________________

If you don’t know the answer to a question, ask your instructor for help.

1.

1. Consider the code shown to the right. The code will produce an
error message (“crash”) when it runs.

Why does the program crash?

Will PyCharm identify the error even before the code runs?

Is this a syntax or semantic error? (Circle your choice.)

def main():

cat(4, 10)

print(c)

def cat(a, b):

c = a + b

main()

2. Consider the code
shown to the right. It is
a contrived example
with poor style, but it
will run without errors.

What does it print when the
function named one runs?

Write your answer in the
box to the right of the code.

def one():

a = 4

b = 10

c = two(a, b)

print(a, b, c)

def two(b, a):

print(a, b)

a = 100

b = 200

return a + b

Output:

3. The specification of a function tells which things?

Mark all that apply.

____ Any side effects of the function ____ What goes in

____ How the function works ____ What comes out

CSSE 120 Before-the-Coding Quiz-03 Page 2 of 4

4.

Consider the code in

the next column.

In the third column,

show what the code

prints when it runs.

Your instructor will

show you how to

use the 4th column.

size = 10

for j in range(3):

size = size + 5

print(j, size)

size = size - j

print(size)

Output: j size

10

0 15

15

5. How many integers are there from 3 to 8, inclusive

(that is, including both the 3 and the 8)?

6. How many integers are there from 3 to b, inclusive

(that is, including both the 3 and the b?

7. How many integers are there from a to b, inclusive

(that is, including both the a and the b?

8. Fill in the blanks below to complete the Accumulator pattern that implements the function

sum_many that takes two arguments, m and n (with m <= n), and returns the sum of the squares

of the integers from m to n, inclusive. For example,

sum_many(3, 6) returns (3 * 3) + (4 * 4) + (5 * 5) + (6 * 6), which is 86.

In this and ALL problems through Exam 1, you are forbidden from using the multiple-argument form of

the RANGE expression. That is, range(a) is OK but NOT range(a, b) or range(a, b, c).

def sum_many(m, n):

total = _______________

for k in range(___):

total = total + _____________________________________

CSSE 120 Before-the-Coding Quiz-03 Page 3 of 4

9. [Do this problem with your instructor. Don’t do the remaining problems until you have done this

one.]

Suppose that your module contains a function, sum_of_digits(number), described below.

Assume that it has been implemented correctly (per the specification in its doc-string):

def sum_of_digits(number):

"""

What comes in : A non-negative integer.

What goes out: Returns the sum of the digits in the given integer.

Example: If the integer is 83135, this function returns

(8 + 3 + 1 + 3 + 5), which is 20.

"""

<code hidden>

In the box below, implement a second function, product_of_sums_of_digits(x, y), per

the specification in its doc-string. Hint: reuse sum_of_digits by calling it in your answer.

In general: reuse functions you or someone else wrote by calling them.

def product_of_sums_of_digits(x, y):

"""

What comes in : Non-negative integers x and y.

What goes out: Returns (the sum of the digits of x) times

(the sum of the digits of y).

Example: If x is 12 and y is 501, this function returns 3 * 6,

which is 18.

"""

CSSE 120 Before-the-Coding Quiz-03 Page 4 of 4

10. Fill in the blanks below to complete the Accumulator pattern that implements the function

sum_many_digits that takes a non-negative integer upper_bound and returns the sum of the

sum-of-digits of the integers from 0 to upper_bound, inclusive. For example,

sum_many_digits(12) returns

0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 1 + 2 + 3, which is 51.

Hint: Reuse the sum_of_digits function from the previous problem! That is, call sum_of_digits

as part of your solution to this sum_many_digits problem.

In this and ALL problems through Exam 1, you are forbidden from using the multiple-argument form of

the RANGE expression. That is, range(a) is OK but NOT range(a, b) or range(a, b, c).

def sum_many_digits(upper_bound):

total = _______________

for k in range(___):

total = total + _____________________________________

11. Finally, implement a function more_sum_many_digits that takes two non-negative integers

lowerr_bound and upper_bound and returns the sum of the sum-of-digits of the integers from

lower_bound to upper_bound, inclusive.

Hint: Reuse the function from the previous problem! This problem is SHORT and EASY, once

you see the idea. It can be done with a SINGLE line of code!

def more_sum_many_digits(lower_bound, upper_bound):

